1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alinara [238K]
3 years ago
11

Explain about Absolute viscosity, kinematic viscosity and SUS?

Engineering
1 answer:
ArbitrLikvidat [17]3 years ago
3 0

Answer:

Absolute viscosity is the evaluation of the resistance (INTERNAL) of the fluid  flow

Kinematic viscosity relates to the dynamic viscosity and density proportion.

SUS stands for Sabolt Universal Seconds. it is units which described the variation of oil viscosity

Explanation:

Absolute viscosity is the evaluation of the resistance (INTERNAL) of the fluid  flow, whereas Kinematic viscosity relates to the dynamic viscosity and density proportion. fluid with distinct kinematic viscosities may have similar dynamic viscosities and vice versa.Dynamic viscosity provides you details of  power required to make the fluid flow at some rate, however kinematic viscosity shows how quick the fluid moves when applying a certain force.

SUS stands for Sabolt Universal Seconds. it is units which described the variation of oil viscosity when change with change in temperature. it is measured by using viscosimeter.

You might be interested in
How do we need to prepare for the future?
Paraphin [41]
B. to achieve sustainable development
5 0
3 years ago
A ____ is either in the pressure reducer or in the downstream side of the system to ensure that the control air pressure does no
Alika [10]

Answer:

A relief valve is either in the pressure reducer or in the downstream side of the system to ensure that the control air pressure does not exceed about 30 psig.

3 0
2 years ago
A silicon carbide plate fractured in bending when a blunt load was applied to the plate center. The distance between the fractur
Amanda [17]

Question in order:

A silicon carbide plate fractures in bending when a blunt load was applied to the plate center. The distance between the fracture origin and the mirror/mist boundary on the fracture surface was 0.796 mm. To determine the stress used to break the plate, three samples of the same material were tested and produced the following. What is the estimate of the stress present at the time of fracture for the original plate?

Mirror Radius (mm) Bending Failure Stress (MPa)

0.603                         225

0.203                         368

0.162                         442

Answer:

191 MPa

Explanation:

Failure stress of bending is Inversely proportional to the mirror radius

Bending Stress = \frac{1}{(Mirror Radius)^{n}}

At mirror radius 1 = 0.603 mm   Bending stress 1 = 225 Mpa..............(1)

At mirror radius 2 = 0.203 mm  Bending stress 2 = 368 Mpa...............(2)

At mirror radius 3 = 0.162 mm   Bending stress 3 = 442 Mpa...............(3)

comparing case 1 and 2 using the above equation

\frac{Stress 1}{Stress 2} = ({\frac{Radius 2}{Radius 1}})^{n_1}

\frac{225}{368} = ({\frac{0.203}{0.603}})^{n_1}

0.6114 = (0.3366)^{n_1}

Taking the natural logarithm of both side

ln(0.6114) = n ln(0.3366)

n₁ = ln(0.6114)/ln(0.3366)

n₁ = 0.452

comparing case 2 and 3 using the above equation

\frac{Stress 2}{Stress 3} = ({\frac{Radius 3}{Radius 2}})^{n_2}

\frac{368}{442} = ({\frac{0.162}{0.203}})^{n_2}

0.8326 = (0.7980)^{n_2}

Taking the natural logarithm of both side

ln(0.8326) = n ln(0.7980)

n₂ = ln(0.8326)/ln(0.7980)

n₂ = 0.821

comparing case 1 and 3 using the above equation

\frac{Stress 1}{Stress 3} = ({\frac{Radius 3}{Radius 1}})^{n_3}

\frac{225}{442} = ({\frac{0.162}{0.603}})^{n_3}

0.5090 = (0.2687)^{n_3}

Taking the natural logarithm of both side

ln(0.5090) = n ln(0.2687)

n₃ = ln(0.5090)/ln(0.2687)

n₃ = 0.514

average for n

n = \frac{n_1 + n_2 + n_3}{3}

n = \frac{0.452 +0.821 + 0.514}{3}

n = 0.596

Hence to get bending stress x at mirror radius 0.796

\frac{Stress x}{Stress 3} = ({\frac{Radius 3}{Radius x}})^{0.596}

\frac{Stress x}{225} = ({\frac{0.603}{0.796}})^{0.596}

\frac{Stress x}{225} = 0.8475

stress x = 191 MPa

3 0
4 years ago
One kilogram of air, initially at 5 bar, 350 K, and 3 kg of carbon dioxide (CO2), initially at 2 bar, 450 K, are confined to opp
pentagon [3]

Answer:

Check the explanation

Explanation:

Energy alance of 2 closed systems: Heat from CO2 equals the heat that is added to air in

m_{a} c_{v,a}(T_{eq} -T_{a,i)} =m_{co2} c_{v,co2} (T_{co2,i} -T_{eq)}

1x0.723x(T_{eq} -350)=3x0.780x(450-T_{eq} ) ⇒T_{eq} = 426.4 °K

The initail volumes of the gases can be determined by the ideal gas equation of state,

V_{a,i}  = \frac{mRT_{a,i} }{P_{a,i} }=  \frac{1x (8.314 28.97 kJ kg • °K)x 350°K}{5 bar x 100KPa bar} = 0.201m^{3}

The equilibrium pressure of the gases can also be obtained by the ideal gas equation

P_{eq=\frac{(m_{a}R_{a}T_{eq})+(m_{a}R_{a}T_{eq} ) }{(V_{a,eq}+V_{CO2,eq)} } =\frac{(m_{a}R_{a}T_{eq})+(m_{a}R_{a}T_{eq} ) }{(V_{a,i}+V_{CO2,i)} }

P_{eq}= 1x(8.314 28.97)x426.4+3x(8.314 44)x426.4

                             (0.201+1.275)

= 246.67 KPa = 2.47 bar

6 0
3 years ago
The electrical panel schedules are located on EWR Plan number ___.
Stells [14]
A8 is the answer because yea and because I am a teacher
5 0
3 years ago
Other questions:
  • 6.15. In an attempt to conserve water and to be awarded LEED (Leadership in Energy and Environmental Design) certification, a 20
    14·1 answer
  • Consider the following class definitions: class smart class superSmart: public smart { { public: public: void print() const; voi
    6·1 answer
  • Students are expected to respond to one of the two questions described below. Students should provide examples to clarify their
    12·1 answer
  • Write a single statement that prints outsideTemperature with 2 digits in the fraction
    8·1 answer
  • Prompt the user to enter five numbers, being five people's weights. Store the numbers in an array of doubles. Output the array's
    11·2 answers
  • A mechanical system comprises three subsystems in series with reliabilities of 98, 96, and 94 percent. What is the overall relia
    10·1 answer
  • The following passage contains a fragment. Select the correct revision. Presley took the exuberance of gospel and added the freq
    7·1 answer
  • A 60-Hz 3-phase induction motor is required to drive a load at approximately 850 rpm. How many poles should the motor have
    9·1 answer
  • Explain your own understanding about the relevant connections between the four subsystems of Earth through the use of a creative
    9·1 answer
  • Describe the meaning of the different symbols and abbreviations found on the documents that they use
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!