Answer:
23.3808 kW
20.7088 kW
Explanation:
ρ = Density of oil = 800 kg/m³
P₁ = Initial Pressure = 0.6 bar
P₂ = Final Pressure = 1.4 bar
Q = Volumetric flow rate = 0.2 m³/s
A₁ = Area of inlet = 0.06 m²
A₂ = Area of outlet = 0.03 m²
Velocity through inlet = V₁ = Q/A₁ = 0.2/0.06 = 3.33 m/s
Velocity through outlet = V₂ = Q/A₂ = 0.2/0.03 = 6.67 m/s
Height between inlet and outlet = z₂ - z₁ = 3m
Temperature to remains constant and neglecting any heat transfer we use Bernoulli's equation

Work done by pump

∴ Power input to the pump 23.3808 kW
Now neglecting kinetic energy

Work done by pump

∴ Power input to the pump 20.7088 kW
Answer:
Web Browser
Explanation:
Because you dont use a messaging app or presentation software to look up stuff its common knowledge
Answer:
R = 31.9 x 10^(6) At/Wb
So option A is correct
Explanation:
Reluctance is obtained by dividing the length of the magnetic path L by the permeability times the cross-sectional area A
Thus; R = L/μA,
Now from the question,
L = 4m
r_1 = 1.75cm = 0.0175m
r_2 = 2.2cm = 0.022m
So Area will be A_2 - A_1
Thus = π(r_2)² - π(r_1)²
A = π(0.0225)² - π(0.0175)²
A = π[0.0002]
A = 6.28 x 10^(-4) m²
We are given that;
L = 4m
μ_steel = 2 x 10^(-4) Wb/At - m
Thus, reluctance is calculated as;
R = 4/(2 x 10^(-4) x 6.28x 10^(-4))
R = 0.319 x 10^(8) At/Wb
R = 31.9 x 10^(6) At/Wb
The complete Question is:
Airflow through a long, 0.15-m-square air conditioning duct maintains the outer duct surface temperature at 10°C. If the horizontal duct is uninsulated and exposed to air at 35°C in the crawlspace beneath a home, what is the heat gain per unit length of the duct? Evaluate the properties of air at 300 K. For the sides of the duct, use the more accurate Churchill and Chu correlations for laminar flow on vertical plates.
What is the Rayleigh number for free convection on the outer sides of the duct?
What is the free convection heat transfer coefficient on the outer sides of the duct, in W/m2·K?
What is the Rayleigh number for free convection on the top of the duct?
What is the free convection heat transfer coefficient on the top of the duct, in W/m2·K?
What is the free convection heat transfer coefficient on the bottom of the duct, in W/m2·K?
What is the total heat gain to the duct per unit length, in W/m?
Answers:
- 7709251 or 7.709 ×10⁶
- 4.87
- 965073
- 5.931 W/m² K
- 2.868 W/m² K
- 69.498 W/m
Explanation:
Find the given attachments for complete explanation
Answer:
=0.60
Explanation:
Given :Take
=1.4 for air

=r ⇒ r=16
As we know that

So 
=909.42K
Now find the cut off ration 



So efficiency of diesel engine

Now by putting the all values

So
=0.60
So the efficiency of diesel engine=0.60