I think it’s b hopefully it is
Answer:
18 Watts
Explanation:
For this problem, we simply need to understand the relationship of power to voltage and current. This relationship is derived from Ohm's law:
Power = Voltage * Current
Given this equation, we can say the following to find the power consumption of the motor:
Power = 12volts * 1.5amps
Power = 18 Watts
Hence, the motor is consuming 18 Watts of power.
Cheers.
Answer:
Algorith does not work.
Explanation:
One of the ways to obtain the Dekker Algorithm is through a change in the declaration, that is, a declaration that can be executed at the exact moment it leaves the critical section. This way it is possible that the statement,
turn = 1-i / * P0 sets turn to 1 and P1 sets turn 0 * /
It can be changed to,
turn = (turn +1) \% n / * n = number or processes * /
The result will allow to define if it works or not, that is, if it is greater than 2 the algorithm will not be able to work.
Given this consideration we can say that,
<em>- The dead lock does not occur, because the mutual is imposed (if a resource unit has been assigned to a process, then no other process can access that resource).</em>
<em>- There is the possibility of starving if the shift is established in a non-contentious process.</em>
Directly it can be concluded that there is a possibility of starvation so the algorithm could not work, despite the fact that mutual exclusion guarantees that a dead block does not occur.
Answer:
T=833.8 °C
Explanation:
Given that
m= 2 kg
T₁=200 °C
time ,t= 10 min = 600 s
Work input = 1 KW
Work input = 1 x 600 KJ=600 KJ
Heat input = 0.5 KW
Q= 05 x 600 = 300 KJ
Gas is ideal gas.
We know that for ideal gas internal energy change given as
ΔU= m Cv ΔT
For air Cv= 0.71 KJ/kgK
From first law of thermodynamics
Q = ΔU +W
Heat input taken as positive and work in put taken as negative.
300 KJ = - 600 KJ + ΔU
ΔU = 900 KJ
ΔU= m Cv ΔT
900 KJ = 2 x 0.71 x (T- 200 )
T=833.8 °C
So the final temperature is T=833.8 °C