Given Information:
Wavelength of the red laser = λr = 632.8 nm
Distance between bright fringes due to red laser = yr = 5 mm
Distance between bright fringes due to laser pointer = yp = 5.14 mm
Required Information:
Wavelength of the laser pointer = λp = ?
Answer:
Wavelength of the laser pointer = λp = ?
Explanation:
The wavelength of the monochromatic light can be found using young's double slits formula,
y = Dλ/d
y/λ = D/d
Where
λ is the wavelength
y is the distance between bright fringes.
d is the double slit separation distance
D is the distance from the slits to the screen
For the red laser,
yr/λr = D/d
For the laser pointer,
yp/λp = D/d
Equating both equations yields,
yr/λr = yp/λp
Re-arrange for λp
λp = yp*λr/yr
λp = (5*632.8)/5.14
λp = 615.56 nm
Therefore, the wavelength of the small laser pointer is 615.56 nm.
Ptotal=Ptotal —> m1v1+m2v2=m1v1’+m2v2’ —> (1kg)(2m/s)+(1kg)(0m/s)=(1kg)(-1m/s)+(1kg)(v2’) —> v2’=3m/s
answer: v=3m/s
Answer:
b
Explanation:
The warning would alert the people and give them time to prepare for the tornado. like getting food and going in bunkers
Brainliest awnser?
Answer:
yᵢ = h
vᵢᵧ = 0
Explanation:
Let initial velocity = u
final velocity = v
height = h
acceleration due to gravity = g
Therefore fro equation of motion,

Here initial velocity is zero.
Hence, 

but since it points downward and you positive is taken in the up direction

Answer:
T1 = 417.48N
T2 = 361.54N
T3 = 208.74N
Explanation:
Using the sin rule to fine the tension in the strings;
Given
amass = 42.6kg
Weight = 42.6 * 9.8 = 417.48N
The third angle will be 180-(60+30)= 90 degrees
Using the sine rule
W/Sin 90 = T3/sin 30 = T2/sin 60
Get T3;
W/Sin 90 = T3/sin 30
417.48/1 = T3/sin30
T3 = 417.48sin30
T3 = 417.48(0.5)
T3 = 208.74N
Also;
W/sin90 = T2/sin 60
417.48/1 = T2/sin60
T2 = 417.48sin60
T2 = 417.48(0.8660)
T2 = 361.54N
The Tension T1 = Weight of the object = 417.48N