Comets are usually formed of ice and other suave debris, while asteroids typically contain metals.
Answers:
<span>Answer 1: 10.03 g of siver metal can be formed.</span>
Answer 2: 3.11 g of Co are left over.
Work:
1) Unbalanced chemical equation (given):
<span>Co + AgNO3 → Co(NO3)2 + Ag
2) Balanced chemical equation
</span>
<span>Co + 2AgNO3 → Co(NO3)2 + 2Ag
3) mole ratios
1 mol Co : 2 mole AgNO3 : 1 mol Co(NO3)2 : 2 mol Ag
4) Convert the masses in grams of the reactants into number of moles
4.1) 5.85 grams of Co
# moles = mass in grams / atomic mass
atomic mass of Co = 58.933 g/mol
# moles Co = 5.85 g / 58.933 g/mol = 0.0993 mol
4.2) 15.8 grams of Ag(NO3)
# moles Ag(NO3) = mass in grams / molar mass
molar mass AgNO3 = 169.87 g/mol
# moles Ag(NO3) = 15.8 g / 169.87 g/mol = 0.0930 mol
5) Limiting reactant
Given the mole ratio 1 mol Co : 2 mol Ag(NO3) you can conclude that there is not enough Ag(NO3) to make all the Co react.
That means that Ag(NO3) is the limiting reactant, which means that it will be consumed completely, whilce Co is the excess reactant.
6) Product formed.
Use this proportion:
2 mol Ag(NO3) 0.0930mol Ag(NO3)
--------------------- = ---------------------------
2 mol Ag x
=> x = 0.0930 mol
Convert 0.0930 mol Ag to grams:
mass Ag = # moles * atomic mass = 0.0930 mol * 107.868 g/mol = 10.03 g
Answer 1: 10.03 g of siver metal can be formed.
6) Excess reactant left over
1 mol Co x
----------------------- = ----------------------------
2 mole Ag(NO3) 0.0930 mol Ag(NO3)
=> x = 0.0930 / 2 mol Co = 0.0465 mol Co reacted
Excess = 0.0993 mol - 0.0465 mol = 0.0528 mol
Convert to grams:
0.0528 mol * 58.933 g/mol = 3.11 g
Answer 2: 3.11 g of Co are left over.
</span>
A catalyst affects a chemical reaction by accelerating it. It also offers an alternative way for the reaction to happen that lowers the amount of energy needed.
Answer:

Explanation:
1. Calculate the rate constant
The integrated rate law for first order decay is

where
A₀ and A_t are the amounts at t = 0 and t
k is the rate constant

2. Calculate the half-life
