Answer:
The correct answer is due to the difference in pressure inside and outside the bottle.
Explanation:
Liquids have melting and boiling points that depend on pressure and temperature. The pressure inside the bottle is higher than the pressure outside. This causes the melting point to drop, making the liquid freeze at a lower temperature than if it were at atmospheric pressure, and therefore has a lower temperature than it would freeze at atmospheric pressure. When the bottle is uncovered, the liquid becomes an atmospheric pressure, and due to the temperature acquired when the bottle was closed the liquid freezes.
Have a nice day!
Answer:
2
Explanation:
In two reactions energy is released.
1) C₆H₁₂O₆ + 6O₂ → 6H₂O + 6CO₂ + heat
It is cellular respiration reaction.It involves the breakdown of glucose molecule in the presence of oxygen to yield large amount of energy. Water and carbon dioxide are also produced as a byproduct.
Glucose + oxygen → carbon dioxide + water + 38ATP
2) 2H₂ + O₂ → 2H₂O ΔH = -486 kj/mol
The given reaction is formation of water. In this reaction oxygen and hydrogen react to form water and 486 kj/mol is also released.
The reaction in which heat is released is called exothermic reaction.
Exothermic reaction:
The type of reactions in which energy is released are called exothermic reactions.
In this type of reaction energy needed to break the bonds are less than the energy released during the bond formation.
For example:
Chemical equation:
C + O₂ → CO₂
ΔH = -393 Kj/mol
it can be written as,
C + O₂ → CO₂ + 393 Kj/mol
Endothermic reactions:
The type of reactions in which energy is absorbed are called endothermic reactions.
In this type of reaction energy needed to break the bond are higher than the energy released during bond formation.
For example:
C + H₂O → CO + H₂
ΔH = +131 kj/mol
it can be written as,
C + H₂O + 131 kj/mol → CO + H₂
Answer:
Sulfuric acid contains 2 hydrogen atoms, 1 sulfur atom, and 4 oxygen atoms.
Explanation:
Answer:According to Boyle's Law, the volume of a gas is inversely proportional to the pressure of a gas. Therefore, increasing the volume has the same effect as decreasing the pressure. If the volume in which a gas reaction takes place is DECREASED, the reaction will shift toward the side with fewer moles of GAS.
Explanation: