Answer: 1. C. polar covalent: electrons shared between silicon and sulfur but attracted more to the sulfur
2. B) 
3. B) Fluorine
Explanation:
1. A polar covalent bond is defined as the bond which is formed when there is a difference of electronegativities between the atoms.
Electronegativity difference = electronegativity of sulphur- electronegativity of silicon = 2.5 -1.8 = 0.7
Thus as electronegativity difference is less than 1.7 , the cond is polar covalent and as electronegativity of sulphur is more , the electrons will be more towards sulphur.
2. A molecular compound is usually composed of two or more nonmetal elements. Example:
Ionic compound is formed by the transfer of electrons from metals to non metals. Example:
,
and 
3. For formation of a neutral ionic compound, the charges on cation and anion must be balanced. The cation is formed by loss of electrons by metals and anions are formed by gain of electrons by non metals.
Here K is having an oxidation state of +1 and as the compound formed is KZ, the oxidation state of non metallic element Z should be -1. Thus the element Z is flourine which exists as diatomic gas 
False, it states that matter can be nether created nor destroyed
Answer:
Answer: Chemical change; Chemical property of heat of combustion
Explanation:
A physical change is defined as a change in which there is alteration in shape, size etc. No new substance gets formed in these reactions.
Explanation:
Answer:
Total number of ATP molecules generated from a 32-carbon fatty acid = 206 ATP molecules
Explanation:
A 32 carbon fatty acid which undergoes complete beta-oxidation assuming that the fatty acid is fully saturated will pass through the beta-oxidation cycle 14 times to produce the following:
15 molecules of acetylCoA, 14 molecules of FADH₂, and 14 molecules of NADH.
Each of the 15 acetylCoA molecules can be further oxidized in the citric acid cycle to yield the following: 15 × 3 NADH; 15 × 1 FADH₂, and 15 ATP molecules from the substrate level phosphorylation occuring at the succinylCoA synthetase catalyzed-reaction.
Total FADH₂ produced = 15 + 14 = 29 molecules of FADH₂
Total NADH produced = 45 + 14 = 59 molecules of NADH
The FADH₂ and NADH will each donate a pair of electrons to the electron transfer flavoprotein and mitochondrial NADH dehydrogenase respectively of the electron transport chain, and about 1.5 and 2.5 molecules of ATP are generated respectively when these electrons are transfered to molecular oxygen.
Thus, number of molecules of ATP generated by 29 molecules of FADH₂ = 1.5 × 29 = 43.5 molecules of ATP.
Number of molecules of ATP generated by 59 molecules of NADH = 2.5 × 59 = 147.5
Sum of ATP generated from FADH₂ and NADH = 43.5 + 147.5 = 191 ATP molecules
Total number of ATP molecules generated = 191 + 15 = 206 ATP molecules
Total number of ATP molecules generated from a 32-carbon fatty acid = 206 ATP molecules