Heat
gained or loss in a system can be calculated by multiplying the given mass to the
specific heat capacity of the substance and the temperature difference. It is
expressed as follows:<span>
Heat = mC(T2-T1)
When two objects are in contact,
it should be that the heat lost is equal to what is gained by the other. So, the heat released by the lead is equal to the heat that is absorbed by the water.
</span>Heat = mC(T2-T1) = 50.0 mL (1.00 g/mL) (4.18 J/g °C) (20 °C - 18 °C) = 418 J<span>
</span>
Answer:
32(molecular mass has no unit )
Explanation:
(16)(o2)
16×2
=32
D. The number of electrons equals the atomic number for a neutral element. Each number after the letter refers to the number of electrons in that shell. So for D, 2+2+6+2+6+2 = 20 electrons, which is equal to the atomic number.
25.9 kJ/mol. (3 sig. fig. as in the heat capacity.)
<h3>Explanation</h3>
The process:
.
How many moles of this process?
Relative atomic mass from a modern periodic table:
- K: 39.098;
- N: 14.007;
- O: 15.999.
Molar mass of
:
.
Number of moles of the process = Number of moles of
dissolved:
.
What's the enthalpy change of this process?
for
. By convention, the enthalpy change
measures the energy change for each mole of a process.
.
The heat capacity is the least accurate number in these calculation. It comes with three significant figures. As a result, round the final result to three significant figures. However, make sure you keep at least one additional figure to minimize the risk of rounding errors during the calculation.
Answer:
The significance of "Er" in the diagram is :
B.) Threshold energy for reaction
Explanation:
Threshold energy : It is total amount of energy required by the reactant molecule to reach the transition state .
Activation energy : It is the excess energy absorbed by the molecules to reach the transition state.
<u>Activation Energy = Threshold Energy - Average Kinetic Energy</u>
<u>This means Activation energy decreases on increasing kinetic energy</u>
On increasing Temperature average kinetic energy of the molecule increases which reduces the activation energy and the reaction occur faster in that case.
Catalyst also reduces the Activation energy.
<u>Er = Threshshold energy for reaction at 30 degree</u>
<u>Ea = Activation Energy</u>
<u>The given figure shows that the threshold energy decreases on increasing the temperature</u>
<u>Only the molecule having energy greater than Er can react to form product</u>