Taking into account the definition of molarity, the molarity of a solution prepared by dissolving 0.2 mol sucrose in enough water to make a 100 mL solution is 2
.
<h3>Definition of molarity</h3>
Molar concentration or molarity is a measure of the concentration of a solute in a solution and indicates the number of moles of solute that are dissolved in a given volume.
The molarity of a solution is calculated by dividing the moles of solute by the volume of the solution:

Molarity is expressed in units
.
<h3>Molarity in this case</h3>
In this case, you have:
- number of moles= 0.2 moles
- volume= 100 mL= 0.1 L
Replacing in the definition of molarity:

Solving:
<u><em>molarity= 2 </em></u>
Finally, the molarity of a solution prepared by dissolving 0.2 mol sucrose in enough water to make a 100 mL solution is 2
.
Learn more about molarity:
brainly.com/question/9324116
brainly.com/question/10608366
brainly.com/question/7429224
Answer:
d. increases PFK activity, decreases FBPase activity
Explanation:
Fructose-2,6-bisphophate is formed by the phosphorylation of fructose-6-phosphate catalyzed by phosphofructokinase-2, PFK-2.
Fructose-2,6-bisphophate functions as an allosteric effector of the enzymes phosphofructokinase-1, PFK-1 and fructose-1,6-bisphosphatase, FBPase.
Fructose-2,6-bisphophate has opposite effects on the enzymes, PFK-1 and FBPase. When it binds to the allosteric site of the enzyme, PFK-1, it increases the enzymes's activity by increasing its affinity for its substrate fructose-6-phosphate and reduces its affinity for its allosteric inhibitors ATP and citrate. However, when it binds to FBPase, it reduces its activity by reducing its affinity for glucose, its substrate
In a liquid, particles are close together but can move in any direction. They won't keep a definite shape like solids do.
Answer:
<em>The correct option is D) a motile eukaryote</em>
Explanation:
Peroxisomes are structures which are present only in the plant or animal cells. Hence, based on this observation we can easily tell that the organism which is newly discovered is a eukaryote. Both plants and animals are eukaryotes.
Flagella are structures which are thin and hair shaped. Flagella allow movement of a cell, mostly they allow a whip-like movement. Based on this observation we will conclude that the organism discovered is a motile eukaryote.