Answer:
0.144 kg of water
Explanation:
From Raoult's law,
Mole fraction of solvent = vapor pressure of solution ÷ vapor pressure of solvent = 423 mmHg ÷ 528.8 mmHg = 0.8
Let the moles of solvent (water) be y
Moles of solute (C3H8O3) = 2 mole
Total moles of solution = moles of solvent + moles of solute = (y + 2) mol
Mole fraction of solvent = moles of solvent/total moles of solution
0.8 = y/(y + 2)
y = 0.8(y + 2)
y = 0.8y + 1.6
y - 0.8y = 1.6
0.2y = 1.6
y = 1.6/0.2 = 8
Moles of solvent (water) = 8 mol
Mass of water = moles of water × MW = 8 mol × 18 g/mol = 144 g = 144/1000 = 0.144 kg
<span>If you want the Lewis diagram of arsenic, it is a single element, and not much of a "structure". Simply place five dots on the four sides of an imaginary square around the symbol As. Two of the dots are paired, three are unpaired.
</span>
Answer:15.66 J
Explanation:
mass of block 
Force magnitude=7.5 N
Initial velocity =
Final velocity=
Initial Kinetic Energy=
=
Final Kinetic Energy=
=
Work Done =Final -Initial Kinetic energy=37.714-22.056=15.66 J
Answer:
The sun gives off a type of light that carries energy, and the light from the desk lamp does not
Explanation:
I got it off a Quizlet hope this helps!!

Explanation:
First we need to find the acceleration due to gravity on the planet. The wrench took 0.809 s to fall from a height of 4.50 m so we can use the equation

Solving for g, we get

Recall that the acceleration due to gravity on a planet's surface can be written as

We can express the mass of the planet
in terms of its density
as follows:

The expression for g then becomes

Solving for
we get

![\:\:\:\:\:\:\:= \left[\dfrac{3(13.8\:\text{m/s}^2)}{4\pi (6.674×10^{-11}\:\text{Nm}^2\text{/kg}^2)(5500\:\text{kg/m}^3)}\right]](https://tex.z-dn.net/?f=%5C%3A%5C%3A%5C%3A%5C%3A%5C%3A%5C%3A%5C%3A%3D%20%5Cleft%5B%5Cdfrac%7B3%2813.8%5C%3A%5Ctext%7Bm%2Fs%7D%5E2%29%7D%7B4%5Cpi%20%286.674%C3%9710%5E%7B-11%7D%5C%3A%5Ctext%7BNm%7D%5E2%5Ctext%7B%2Fkg%7D%5E2%29%285500%5C%3A%5Ctext%7Bkg%2Fm%7D%5E3%29%7D%5Cright%5D)
