To solve this, we should follow order of operations. To start, we should multiply the values inside of the parentheses.
(34.6785*5.39)+435.12
186.917115+435.12
Now, we should add the 2 values we are left with together.
186.917115
<span><u>+435.120000</u>
</span> 622.037115
Using the math above, we can see that this expression is equal to 622.037115.
Butterflies are cold-blooded and need the light from the sun to warm the muscles they use to fly. Not only do butterflies like the sun, the plants the they thrive on need full direct sun. Most plants need at least 8 hours of sunlight to bloom properly and provide enough nectar.
Answer:
The reaction will be spontaneous
Explanation:
To determine if the reaction will be spontaneous or not at this temperature, we need to calculate the Gibbs's energy using the following formula:
<u>If the Gibbs's energy is negative, the reaction will be spontaneous, but if it's positive it will not.</u>
Calculating the
:
Now, other factor we need to determine is the sign of the S variation. When talking about gases, the more moles you have in your system the more enthropic it is.
In this reaction you go from 7 moles to 8 moles of gas, so you can say that you are going from one enthropy to another higher than the first one. This results in:
If the variation of S is positive, the Gibbs's energy will be negative always and the reaction will be spontaneous.
Answer:
18.0 g of mercury (11) oxide decomposes to produce 9.0 grams of mercury
Explanation:
Mercury oxide has molar mass of 216.6 g/ mol. It gas a molecular formula of HgO.
The decomposition of mercury oxide is given by the chemical equation below:
2HgO ----> 2Hg + O₂
2 moles of HgO decomposes to produce 1 mole of Hg
2 moles of HgO has a mass of 433.2 g
433.2 g of HgO produces 216.6 g of Hg
18.0 of HgO will produce 18 × 216.6/433.2 g of Hg = 9.0 g of Hg
Therefore, 18.0 g of mercury (11) oxide decomposes to produce 9.0 grams of mercury
Answer:
the pig's average speed is 7 m/s