Answer:
(a) -8064 N
(b) 8064 N
Explanation:
(a)
From Newton’s law of motion, Force, F=ma where m is mass and a is acceleration.
Since acceleration is the rate of change of velocity per unit time, then where v is velocity and the subscripts f and I denote final and initial
For the first ball, the mass is 0.28 Kg, final velocity is zero since it finally comes to rest, t is 0.00025 s and initial velocity is given as 7.2 s. Substituting these values we obtain

(b)
For the second ball, the mass is also 0.28 Kg but its initial velocity is taken as zero, the final velocity of the second ball will be equal to the initial velocity of the second ball, that is 7.2 m/s and the time is also same, 0.00025 s. By substitution

Here, we prove that action and reaction are equal and opposite
Answer:
<h3>1/16</h3>
Explanation:
According to the coulombs law, the force existing vetween the ions is expressed as;
F = kQq/r² .... 1
Q and q are the ions
r is the distance between the ions
If the distance between the ion is quadrupled, then;
F2 = kQq/(4r)²
F2 = kQq/16r² ... 2
Divide equation 2 by 1;
F2/F = kQq/16r² ÷ kQq/r²
F2/F = kQq/16r² × r²/kQq
F2/F = 1/16
F2 = 1/16 F
Therefore the coulombic force between two ions is reduced to<u> 1/16 </u>of its original strength when the distance between them is quadrupled.
Answer:
The volume is decreasing at 160 cm³/min
Explanation:
Given;
Boyle's law, PV = C
where;
P is pressure of the gas
V is volume of the gas
C is constant
Differentiate this equation using product rule:

Given;
(increasing pressure rate of the gas) = 40 kPa/min
V (volume of the gas) = 600 cm³
P (pressure of the gas) = 150 kPa
Substitute in these values in the differential equation above and calculate the rate at which the volume is decreasing (
);
(600 x 40) + (150 x
) = 0

Therefore, the volume is decreasing at 160 cm³/min
<span>Let's convert the speed to m/s:
speed = (55 mph) (1609.3 m / mile) (1 hour / 3600 seconds)
speed = 24.59 m/s
Let's convert the mass to kilograms:
mass = (2135 lb) (0.45359 kg / lb)
mass = 968.4 kg
We can find the kinetic energy KE:
KE = (1/2) m v^2
KE = (1/2) (968.4 kg) (24.59 m/s)^2
KE = 292780 joules
The kinetic energy of the automobile is 292780 joules.</span>
It is overhead at the equator, it is because the sun ray’s
will be moving vertically as this will be directed at the equator. It is
because if it moves vertically, it will hit or overhead the equator and this
usually happens in spring and fall.