Answer:
The height is 3.1m
Explanation:
Here we have a conservation of energy problem, we have a conversion form eslastic potencial energy to gravitational potencial energy, so:

then we have only gravitational potencial energy when the ball is at its maximun height.

because all the energy was transformed Eg=Ee

searching the web, the mass of a ping pong ball is 2.7 gr in average. so:

You will need to multiply them.
I have physics class and for acceleration we use 9.8m/s^2 but you used 9.5m/s^2.
If that’s what ur teacher wants u to use that’s ok. But yeah you multiply them.
F=ma
You multiply m and a
Answer:
i have absolutly no idea how to do it but i looked it up and your answer should be B. i could be wrong but thats what the web told me
Answer:
a ) 24 m/s
Explanation:
Given,
Frequency ( f ) = 6 Hz
Wavelength ( λ ) = 4 m
To find : Speed ( v ) = ?
Formula : -
v = f x λ
v
= 4 x 6
= 24 m/s
Therefore, the speed of a wave that has a frequency of 6 Hz and a wavelength of 4 m
is 24 m/s.
Answer:
See the answers below.
Explanation:
To solve this problem we must use the following equation of kinematics.

where:
Vf = final velocity = 10 [m/s]
Vo = initial velocity = 40 [m/s]
t = time = 5 [s]
a = acceleration [m/s²]
Now replacing:
![10=40-a*5\\40-10=a*5\\30=5*a\\a=6[m/s^{2}]](https://tex.z-dn.net/?f=10%3D40-a%2A5%5C%5C40-10%3Da%2A5%5C%5C30%3D5%2Aa%5C%5Ca%3D6%5Bm%2Fs%5E%7B2%7D%5D)
Note: The negative sign in the above equation means that the velecity is decreasing.
2)
To solve this second part we must use the following equation of kinematics.

where:
x = distance [m]
![(10)^{2} =(40)^{2} -2*6*x\\100=1600-12*x\\12*x=1600-100\\12*x=1500\\x=125[m]](https://tex.z-dn.net/?f=%2810%29%5E%7B2%7D%20%3D%2840%29%5E%7B2%7D%20-2%2A6%2Ax%5C%5C100%3D1600-12%2Ax%5C%5C12%2Ax%3D1600-100%5C%5C12%2Ax%3D1500%5C%5Cx%3D125%5Bm%5D)