Answer:
A×B=C×D
500×0.5=250×X
250=250×X
X=250/250=1
X=1 m
Explanation:
note: if the force plus two, the distance will be half.
<span>Germanium
To determine which melts first, convert their melting temperatures so they're both expressed on same scale. It doesn't matter what scale you use, Kelvin, Celsius, of Fahrenheit. Just as long as it's the same scale for everything. Since we already have one substance expressed in Kelvin and since it's easy to convert from Celsius to Kelvin, I'll use Kelvin. So convert the melting point from Celsius to Kelvin for Gold by adding 273.15
1064 + 273.15 = 1337.15 K
So Germanium melts at 1210K and Gold melts at 1337.15K. Germanium has the lower melting point, so it melts first.</span>
The solution is:
Paige's force is (somewhat) against the direction of motion: Work = F * d Where F is the force; andd is the distance
Our f is 64 N and our distance is 20 and -3.6Plugging that in our equation will give us:
= 64N * cos20º * -3.6m = -217 J
KE = (1/2)·(mass)·(speed)²
KE = (1/2)·(50 kg)·(18 m/s)²
KE = (25 kg)·(324 m²/s²)
KE = 8,100 kg-m²/s²
KE = 8,100 Joules
Different wavelengths of light are seen as colors