Answer:
Energy is force times distance. For your problem, no matter how long you push, the wall still goes nowhere, so there is no obvious energy transfer. so in conclusion, you actually didn't do anything :(
Explanation:
Answer:3,600 Newtons
Explanation:
The net force acting on the car is
3×10^3squared
Newtons.
Force is defined as the product of the mass of the body and its aaceleration,⇒F=ma
Substituting the above given values we get,F=(1500kg) (2.0m /s^2 squared)=3000 N=3×10^3 squared N.
N=newtons
In transistor,
Emitter current is equal to the sum of base current and collector current.
Thanks!
the axis acts against and it would be a contact force
Answer:
μ = 0.33
Equal to 3.2 m/s²
Explanation:
Draw a free body diagram of the block. There are three forces:
Normal force N pushing up.
Weight force mg pulling down.
Friction force Nμ pushing opposite the direction of motion.
Sum of forces in the y direction.
∑F = ma
N − mg = 0
N = mg
Sum of forces in the x direction.
∑F = ma
Nμ = ma
Substitute.
mgμ = ma
μ = a/g
μ = (3.2 m/s²) / (9.8 m/s²)
μ = 0.33
As found earlier, the acceleration is a = gμ. Since g and μ are constant, a is also constant, so it does not change with velocity.