1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tester [92]
3 years ago
12

What is the change in potential energy of an energetic 72 kg hiker who makes it from the floor of death valley to the top of mt.

whitney?
Physics
1 answer:
storchak [24]3 years ago
3 0
<span>The lowest point in Death Valley is 85 m below sea level. The summit of nearby Mt. Whitney has an elevation of 4420 m. </span>
You might be interested in
on a very muddy football field, a 120 kg linebacker tackles an 75 kg halfback. immediately before the collision, the linebacker
Aleksandr-060686 [28]
B4 the tackle: 

<span>The linebacker's momentum = 115 x 8.5 = 977.5 kg m/s north </span>

<span>and the halfback's momentum = 89 x 6.7 = 596.3 kg m/s east </span>


<span>After the tackle they move together with a momentum equal to the vector sum of their separate momentums b4 the tackle </span>

<span>The vector triangle is right angled: </span>

<span>magnitude of final momentum = √(977.5² + 596.3²) = 1145.034 kg m/s </span>

<span>so (115 + 89)v(f) = 1145.034 ←←[b/c p = mv] </span>

<span>v(f) = 5.6 m/s (to 2 sig figs) </span>


<span>direction of v(f) is the same as the direction of the final momentum </span>

<span>so direction of v(f) = arctan (596.3 / 977.5) = N 31° E (to 2 sig figs) </span>


<span>so the velocity of the two players after the tackle is 5.6 m/s in the direction N 31° E </span>




<span>btw ... The direction can be given heaps of different ways ... N 31° E is probably the easiest way to express it when using the vector triangle to find it</span>
4 0
3 years ago
An electron with speed 2.45 x 10^7 m/s is traveling parallel to a uniform electric field of magnitude 1.18 x 10^4N/C . How much
cupoosta [38]

Answer:

time will elapse before it return to  its staring point is 23.6 ns

Explanation:

given data

speed u = 2.45 × 10^{7} m/s

uniform electric field E = 1.18 × 10^{4} N/C

to find out

How much time will elapse before it returns to its starting point

solution

we find acceleration first by electrostatic force that is

F = Eq

here

F = ma by newton law

so

ma = Eq

here m is mass , a is acceleration and E is uniform electric field and q is charge of electron

so

put here all value

9.11 × 10^{-31} kg ×a = 1.18 × 10^{4} × 1.602 × 10^{-19}

a = 20.75 × 10^{14} m/s²

so acceleration is 20.75 × 10^{14} m/s²

and

time required by electron before come rest is

use equation of motion

v = u + at

here v is zero and u is speed given and t is time so put all value

2.45 × 10^{7} = 0 + 20.75 × 10^{14} (t)

t = 11.80 × 10^{-9} s

so time will elapse before it return to  its staring point is

time = 2t

time = 2 ×11.80 × 10^{-9}

time is 23.6 × 10^{-9} s

time will elapse before it return to  its staring point is 23.6 ns

7 0
2 years ago
When using the scientist method, which step comes last?
iogann1982 [59]

Here, I hope this helps.

:)

6 0
3 years ago
A basketball star covers 3.05 m horizontally in a jump to dunk the ball (see figure). His motion through space can be modeled pr
rosijanka [135]
<span><span>anonymous </span> 4 years ago</span>Any time you are mixing distance and acceleration a good equation to use is <span>ΔY=<span>V<span>iy</span></span>t+1/2a<span>t2</span></span> I would split this into two segments - the rise and the fall. For the fall, Vi = 0 since the player is at the peak of his arc and delta-Y is from 1.95 to 0.890. For the upward part of the motion the initial velocity is unknown and the final velocity is zero, but motion is symetrical - it takes the same amount of time to go up as it does to go down. Physiscists often use the trick "I'm going to solve a different problem, that I know will give me the same answer as the one I was actually asked.) So for the first half you could also use Vi = 0 and a downward delta-Y to solve for the time. Add the two times together for the total. The alternative is to calculate the initial and final velocity so that you have more information to work with.
5 0
2 years ago
Read 2 more answers
A6 kg mass moving at 10m/s collides with a 4 kg mass moving in the
Nat2105 [25]

Answer:

Explanation:

mdeemmkdkwdmwdmw

4 0
2 years ago
Other questions:
  • PLEASE HELP ASAP!!! CORRECT ANSWER ONLY PLEASE!!!
    12·2 answers
  • Two protons are 0.00500 m apart. Find the force between them.
    8·1 answer
  • Find the current that flows in a silicon bar of 10-μm length having a 5-μm × 4-μm cross-section and having free-electron and hol
    11·1 answer
  • What will Al’s charge be when it comes an ion
    10·1 answer
  • A train at a constant 79.0 km/h moves east for 27.0 min, then in a direction 50.0° east of due north for 29.0 min, and then west
    8·1 answer
  • An object travels 8 meters in the 1st second of travel, 8 meters again during the 2nd second of travel, and 8 meters again durin
    10·1 answer
  • I NEED HELP ASAP PLEASE!
    7·2 answers
  • A roller coaster travels down a 120 m track in 12.5 seconds how fast does the roller coaster go
    7·1 answer
  • A battery is connected to a 10 resistor and produces a current of 0.2 A in the circuit. If the resistor is replaced with a 20 re
    7·1 answer
  • What is the distance between a 2000 kg truck and a 3000 kg truck if the gravitational force between them is 0.00006 N?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!