Answer: 2 cm
Explanation:
Given , for a converging lens
Focal length : 
Height of object : 
Object distabce from lens : 
Using lens formula:
, we get
, where v = image distance from the lens.
On solving aboive equation , we get

Formula of Magnification :
, where h' is the height of image.
Put value of u, v and h in it , we get

Hence, the height of the image is 2 cm.
Answer:
What is a Free Body Diagram?
The free body diagram helps you understand and solve static and dynamic problem involving forces. It is a diagram including all forces acting on a given object without the other object in the system. You need to first understand all the forces acting on the object and then represent these force by arrows in the direction of the force to be drawn.
Explanation:
Answer:
106.7 N
Explanation:
We can solve the problem by using the impulse theorem, which states that the product between the average force applied and the duration of the collision is equal to the change in momentum of the object:

where
F is the average force
is the duration of the collision
m is the mass of the ball
v is the final velocity
u is the initial velocity
In this problem:
m = 0.200 kg
u = 20.0 m/s
v = -12.0 m/s

Solving for F,

And since we are interested in the magnitude only,
F = 106.7 N
Answer:
B. has a smaller frequency
C. travels at the same speed
Explanation:
The wording of the question is a bit confusing, it should be short/long for wavelength and low/high for frequency. I assume low wavelength mean short wavelength.
All sound wave travel with the same velocity(343m/s) so wavelength doesn't influence its speed at all. It won't be faster or slower, it will have the same speed.
Velocity is a product of wavelength and frequency. So, a long-wavelength sound wave should have a lower frequency.
The option should be:
A. travels slower -->false
B. has a smaller frequency -->true
C. travels at the same speed --->true
D. has a higher frequency --->false
E. travels faster has the same frequency --->false
The set of all sets that are not members of themselves. This contradiction is Russell's paradox.