Answer:
To your left
Explanation:
The direction of the force exerted on charged particle due to a magnetic field is given by the right-hand-rule, where:
- The index finger indicates the direction of motion of the electron
- the middle finger gives the direction of the magnetic field
- the thumb gives the direction of the force if the particle is positively charged - otherwise, the direction is reversed
in this case, we have an electron (so, a negatively charged particle):
- The direction of motion (index finger) is horizontal, toward you
- The electron begins to curve upward as it enters the field, so this means that the force exerted on the electrons is upward --> the thumb must point downward (because the electron is negatively charged)
- The index finger gives us the direction of the magnetic field: therefore, to your left.
Answer:
work=f(costheta)
Explanation:
work is done when a force acts on a body and displaces it on the direction of force
The answer is going to be magnetic domain
Answer: A Answers. Assuming that the terminal velocity doesn't change during the fall, then the kinetic energy would remain constant. However the terminal velocity decreases during the fall since the air becomes denser at lower altitudes.
Explanation:
What happens to the KE of an object when it slows down and heats up? - Quora. The kinetic energy goes down and the loss of the kinetic energy is through the production of heat energy. In real world this is due to friction, or an opposing force that decelerates the object, or a combination of both.
I think transfers is the answer