- The wavelength range of Infrared radiation is 700 nanometers to 1 millimeter.
- The sun emits mainly near-infrared which is mainly composed of wavelength below 4 micrometers.
- The thermal range of infrared ranges between wavelengths 3.5 and 2.0 micrometers
Explanation:
The wavelength range of Infrared radiation is 700 nanometers to 1 millimeter. This also translates to a frequency range of 430 TeraHertz to 300 Giga Hertz.
Because the sun is a star and is hot in comparison to earth and other planetary bodies, the bigger range of infrared radiation it emits is in the near-infrared which is mainly composed of wavelength below 4 micrometers.
The earth's surface produces infrared radiation of the mid-infrared range while cooler substances will produce far-infrared range
The thermal range of infrared ranges between wavelengths 3.5 and 2.0 micrometers and is produced by black bodies.
Learn More:
For more on infrared radiation check out;
brainly.com/question/2369243
#LearnWithBrainly
Answer:
Reactive and lose 1 electron
Explanation:
Answer:
2-methylene propylbenzene
Explanation:
The Wittig Reaction is a reaction that converts aldehydes and ketones into alkenes through reaction with a phosphorus ylide.
The ketone in this case is 1-phenylpropan-1-one. The provided phosphonium ylide is shown in the image attached. The reaction involves;
i) alkylation
ii) addition
The product of the major organic product of the reaction is 2-methylene propylbenzene.
Answer:
Kc for this reaction is 0.43
Explanation:
This is the equilibrium:
N₂(g) + 2H₂O(g) → 2NO(g) +2H₂(g)
And we have all the concentration at equilibrium:
N₂: 0.25M
H₂ : 1.3M
NO: 0.33M
H₂: 1.2M
They are ok, because they are in MOLARITY. (mol/L)
Let's make the expression for Kc
Kc = ( [NO]² . [H₂]² ) / ([N₂] . [H₂O]²)
Kc = (0.33² . 1.2²) / (0.25 . 1.2²)
Kc = 0.4356
In two significant digits. 0.43
Hydrogen bonding is important because it is crucial to all life on Earth. Here are three reasons why hydrogen bonding is important. DNA has a double-helix structure because hydrogen bonds hold together the base pairs in the middle. Without hydrogen bonds, DNA would have to exist as a different structure.