Answer:
3.83 m/s
Explanation:
Given that,
Distance covered by Jan, d = 4 miles
1 mile = 1609.34 m
4 miles = 6437.38 m
Time, t = 28 minutes = 1680 s
Jan's average speed,
v = d/t

Hence, the average velocity of Jan is 3.83 m/s.
Inelastic.
If it was elastic, they'd bump right off each other. But since they've been locked, or stuck together, this is inelastic.
Answer:
If we use the equation for the transformation of velocities for moving frames:
v' = (v - u) / (1 - u * v / c^2) where we measure the speed of v' approaching from the left where v is in a frame moving at -u towards v'
v' = (.6 c - (-.6 c)) / (1 - (-.6 c) * .6 c / c^2) = 1.2 c / (1 + .6 * .6)
or v' = 1.2 c / (1 + .36) = .88 c
v is approaching from the left at .6 c in the reference frame and the other frame approaches from the right at -.6 c with speed u (-.6 c) and we measure the speed of v as seen in the frame moving to the left
Answer:



Explanation:
Given:
- volume of liquid content in the can,

- mass of filled can,

- weight of empty can,

<u>So, mass of the empty can:</u>



<u>Hence the mass of liquid(soda):</u>



<u>Therefore the density of liquid soda:</u>
(as density is given as mass per unit volume of the substance)


<u>Specific weight of the liquid soda:</u>



Specific gravity is the density of the substance to the density of water:

where:
density of water

