Answer:
1609.1429 rad/sec
Explanation:
By using the relation Angular velocity and frequency as:
Angular velocity (ω) = 2×π×Frequency (ν)
Given the frequency = 256 vibrations per second.
So, Angular velocity can be calculated by using the above formula as:
Angular velocity (ω) = 2×π×Frequency (ν)
⇒Angular velocity (ω) = 2×π×256 rad/ sec
⇒Angular velocity (ω) = 2×(22/7)×256 rad/ sec
<u>⇒Angular velocity (ω) = 1609.1429 rad/ sec</u>
Answer:

G= gravitational constant
F= Gravitational force
m= mass of object 1
M= mass of object 2
r= distance between two objects
Answer:
the rocks are away from cracks in the crust
Explanation:
The new crust is pushed away from the Ocean Ridge in both directions as newer crust is formed. This is called sea floor spreading. The crust that makes up the sea floor starts to have time to accumulate a layer of sediments as it gets older and moves away from the Ocean Ridge.
Answer:
Coefficient of kinetic friction = 0.146
Explanation:
Given:
Mass of sled (m) = 18 kg
Horizontal force (F) = 30 N
FInal speed (v) = 2 m/s
Distance (s) = 8.5 m
Find:
Coefficient of kinetic friction.
Computation:
Initial speed (u) = 0 m/s
v² - u² = 2as
2(8.5)a = 2² - 0²
a = 0.2352 m/s²
Nweton's law of :
F (net) = ma
30N - μf = 18 (0.2352)
30 - 4.2336 = μ(mg)
25.7664 = μ(18)(9.8)
μ = 0.146
Coefficient of kinetic friction = 0.146
Answer:
Gravity only becomes noticeable when there is a really massive object like a moon, planet or star. We are pulled down towards the ground because of gravity. The gravitational force pulls in the direction towards the centre of any object.