Answer:
Explanation:
24 - gauge wire , diameter = .51 mm .
Resistivity of copper ρ = 1.72 x 10⁻⁸ ohm-m
R = ρ l / s
1.72x 10⁻⁸ / [3.14 x( .51/2)² x 10⁻⁶ ]
= 8.42 x 10⁻² ohm
= .084 ohm
B ) Current required through this wire
= 12 / .084 A
= 142.85 A
C )
Let required length be l
resistance = .084 l
2 = 12 / .084 l
l = 12 / (2 x .084)
= 71.42 m
<span>he theory states that Earth's outermost layer, the lithosphere, is broken into 7 large, rigid pieces called plates: the African, North American, South American, Eurasian, Australian, Antarctic, and Pacific plates. Several minor plates also exist, including the Arabian, Nazca, and Philippines plates. The plates are all moving in different directions and at different speeds</span>
The electromagnetic spectrum is the range of all types of radiation. Radiation is energy that travels and spreads out as it goes – the visible light that comes from a lamp in your house and the radio waves that come from a radio station are two types of electromagnetic radiation. The other types of EM radiation that make up the electromagnetic spectrum are microwaves, infrared light, ultraviolet light, X-rays and gamma-rays.
To help you, check out the picture!
Answer:
<h3>a.</h3>
- After it has traveled through 1 cm :

- After it has traveled through 2 cm :

<h3>b.</h3>
- After it has traveled through 1 cm :

- After it has traveled through 2 cm :

Explanation:
<h2>
a.</h2>
For this problem, we can use the Beer-Lambert law. For constant attenuation coefficient
the formula is:

where I is the intensity of the beam,
is the incident intensity and x is the length of the material traveled.
For our problem, after travelling 1 cm:




After travelling 2 cm:




<h2>b</h2>
The optical density od is given by:
.
So, after travelling 1 cm:




After travelling 2 cm:



