Answer:
0.68 V
Explanation:
For anode;
3Mg(s) ---->3Mg^2+(aq) + 6e
For cathode;
2Al^3+(aq) + 6e -----> 2Al(s)
Overall balanced reaction equation;
3Mg(s) + 2Al^3+(aq) ----> 3Mg^2+(aq) + 2Al(s)
Since
E°anode = -2.356 V
E°cathode = -1.676 V
E°cell=-1.676 -(-2.356)
E°cell= 0.68 V
Answer:
XCH₄ = 0.461
XCO₂ = 0.539
Explanation:
Step 1: Given data
- Partial pressure of methane (pCH₄): 431 mmHg
- Partial pressure of carbon dioxide (pCO₂): 504 mmHg
Step 2: Calculate the total pressure in the container
We will sum both partial pressures.
P = pCH₄ + pCO₂
P = 431 mmHg + 504 mmHg = 935 mmHg
Step 3: Calculate the mole fraction of each gas
We will use the following expression.
Xi = pi / P
XCH₄ = pCH₄/P = 431 mmHg/935 mmHg = 0.461
XCO₂ = pCO₂/P = 504 mmHg/935 mmHg = 0.539
The process of an atom releasing energy when it moves to a lower energy state is called emission.
Hydrogen, hydrogen ion (H+) is associated with acids
Given :
A 10.99 g sample of NaBr contains 22.34% Na by mass.
To Find :
How many grams of sodium does a 9.77g sample of sodium bromine contain.
Solution :
By law of constant composition , in any given chemical compound, the elements always combine in the same proportion with each other.
Therefore , percentage of Na by mass in NaBr will be same for every amount .
Percentage of Na in 9.77 g NaBr is 22.34 % too .
Gram of Na =
.
Hence , this is the required solution .