In order to solve this problem, there are two equations that you need to know to solve this problem and pretty much all of kinematics. The first is that d=0.5at^2 (d=vertical distance, a=acceleration due to gravity and t=time). The second is vf-vi=at (vf=final velocity, vi=initial velocity, a=acceleration due to gravity, t=time). So to find the time that the ball traveled, isolate the t-variable from the d=0.5at^2. Isolate the t and the equation now becomes

. Solving the equation where d=8 and a=9.8 makes the time

=1.355 seconds. With the second equation, the vi=0 m/s, the vf is unknown, a=9.8 m/s^2 and t=1.355 sec. Substitute all these values into the equation vf-vi=at, this makes it vf-0=9.8(1.355). This means that the vf=13.28 m/s.
Answer:
<h2><u>given</u></h2>
<em>mass</em><em> </em><em>=</em><em> </em><em>39</em><em>5</em><em>0</em><em> </em><em>kg</em>
<em>speed</em><em>=</em><em> </em><em>2</em><em>5</em><em>m</em><em>/</em><em> </em><em>sec</em>
<em>time</em><em>=</em><em> </em><em>1</em><em>0</em><em>.</em><em>5</em><em> </em><em>sec</em>
<h2><em>To</em><em> </em><em>find</em><em> </em></h2>
<em>force</em><em> </em>
<h2><em><u>Solution</u></em></h2>
<h3><em>☄️</em><em>Formula</em><em> </em><em>of</em><em> </em><em>force</em><em> </em></h3>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em>
<em>
</em>
<u><em>To</em><em> </em><em>find</em><em> </em><em>the </em><em>force </em><em>we</em><em> </em><em>need</em><em> </em><em>to</em><em> </em><em>find</em><em> </em><em>the </em><em>Acceleration</em><em> </em><em>first</em><em>.</em></u>
<em>accler</em><em>ation</em><em>=</em><em> </em><em>change</em><em> </em><em>in</em><em> </em><em>Velocity</em><em>/</em><em>time</em>
<em>accle</em><em>ration</em><em>=</em><em> </em><em>2</em><em>5</em><em>/</em><em>1</em><em>0</em><em>.</em><em>5</em>
<u><em>acc</em><em>leration</em><em>=</em><em> </em><em>2.38</em><em> </em><em>m</em><em>/</em><em>sec²</em></u>
<u><em>put</em><em> </em><em>the</em><em> </em><em>value</em><em> </em><em>of</em><em> </em><em>accle</em><em>ration</em><em> </em><em>in</em><em> </em><em>the </em><em>formula</em><em> of</em><em> force</em></u>
<u><em>force</em><em> </em><em>=</em><em> </em><em>Mass</em><em> </em><em>.</em><em> </em></u><em><u>accleration</u></em>
<em>force</em><em> </em><em>=</em><em> </em><em>39</em><em>5</em><em>0</em><em> </em><em>x</em><em> </em><em>2</em><em>.</em><em>3</em><em>8</em>
<h3>
<em>☄️</em><em>force</em><em> </em><em>=</em><em> </em><em>9,401</em><em> </em><em>Newton</em></h3>
<span>1.) It is 6.00km from your home to the physics lab. As part of your physical fitness program, you could run that distance at 10.0km/hr (which uses up energy at the rate of 700W ), or you could walk it leisurely at 3.00km/hr (which uses energy at 290 W).
A.)Which choice would burn up more energy?
running or walking?
b.)How much energy (in joules) would it burn?
c.)Why is it that the more intense exercise actually burns up less energy than the less intense one?
Follow 2 answers Report Abuse
Answers
billrussell42
Best Answer: running, at 10 km/hour for 6 km is
6 km / 10 km/hour = 0.6 hour or 36 min
energy used is 700 watts or 700 joules/s x 36 min x 60s/min = 1.512e6 joules or 1.5 MJ
walking, at 3 km/hour for 6 km
6 km / 3 km/hour = 2 hour or 120 min
energy used is 290 watts or 290 joules/s x 120 min x 60s/min = 1.872e6 joules or 1.8 MJ
C) should be obvious
PS, this has nothing to do with potential energy.
billrussell42 · 5 years ago
0 Thumbs up 1 Thumbs down Report Abuse Comment
Simon van Dijk
I assume the watt consumption is per hour. Then running 6km at 10.0 km/h results in 700*6/10 = 420 w.h and walking in 290*6/3 = 580 w.h So walking would burn up more energy (kwh)
b) 1 kilowatt hour = 3 600 000 joules
so 420 wh = 0.42 kwh = 1.51.10^6 joule
c) when you put more effort in making the distance your energy is used more efficient.
Simon van Dijk · 5 years ago
0 Thumbs up 2 Thumbs down Report Abuse Comment</span>
Fist one is a cylinder
the second, i believe is a sphere
the third is a rectangular prism
and the last is the same as the first, a cylinder
Answer:
a)
, b)
, c) 
Explanation:
a) The initial potential energy is:


b) The efficiency of the bounce is:


c) The final speed of Danielle right before reaching the bottom of the hill is determined from the Principle of Energy Conservation:




