<span>In order to make 4 complete revolutions in 4 seconds, the wheel must have a constant angular acceleration of 144° (or 2.5 radians) per square second, hence after 8 seconds the wheel will have made 14,4 revolutions, or 5184° in total.</span>
Yes. Even greater. Air resistance or drag becomes harder the faster an object goes. This is why when cars reach their max speed they don't accelerate as fast, because they are pushing harder against the wind. If I take a tennis ball and shoot it down a bottomless pit, a 400 kph, the drag will slow the ball down till it reaches terminal velocity.
Index of refraction can be calculated using the following formula:

where
in a vacuum and "n" is the index of refraction. So we must calculate our velocity by manipulating the index of refraction formula and isolate v and so:

We could go one by one and calculate the velocity or use logic. If you divide by a larger number the output will be a smaller number. Therefore, the answer would be n=1.62 is the slowest.

By that logic when n=1 light would travel the fastest of these four scenarios. The key thing to understand about these problems is that the speed of light slows down as it goes through a medium, in a vacuum it's 3 x 10^ 8 m/s but as it goes through say air or water light slows down.
Before going to solve this question first we have to understand specific heat capacity of a substance .
The specific heat of a substance is defined as amount of heat required to raise the temperature of 1 gram of substance through one degree Celsius. Let us consider a substance whose mass is m.Let Q amount of heat is given to it as a result of which its temperature is raised from T to T'.
Hence specific heat of a substance is calculated as-
![c= \frac{Q}{m[T'-T]}](https://tex.z-dn.net/?f=c%3D%20%5Cfrac%7BQ%7D%7Bm%5BT%27-T%5D%7D)
Here c is the specific heat capacity.
The substance whose specific heat capacity is more will take more time to be heated up to a certain temperature as compared to a substance having low specific heat which is to be heated up to the same temperature.
As per the question John is experimenting on sand and water.Between sand and water,water has the specific heat 1 cal/gram per degree centigrade which is larger as compared to sand.Hence sand will be heated faster as compared to water.The substance which is heated faster will also cools faster.
From this experiment John concludes that water has more specific heat as compared to sand.
Answer:
0.05081 kg
Explanation:
= Mass of blood
= 0.435 m/s
= Mass of subject and pallet = 54 kg
= Velocity of subject and pallet = 
In this system the linear momentum is conserved so,

The mass of blood is 0.05081 kg