Answer:

Explanation:
We have the following data:
- distance covered by the child: d = 2 m (length of the slide)
- time taken to cover this distance: t = 3 s
- initial velocity of the child: 0 m/s (he starts from rest)
So we can find the acceleration by using the equation:

Where a is the acceleration.
Substituting the values and solving for a,

It makes no sense how you typed this problem out.
Answer:
H = 1/2 g t^2 where t is time to fall a height H
H = 1/8 g T^2 where T is total time in air (2 t = T)
R = V T cos θ horizontal range
3/4 g T^2 = V T cos θ 6 H = R given in problem
cos θ = 3 g T / (4 V) (I)
Now t = V sin θ / g time for projectile to fall from max height
T = 2 V sin θ / g
T / V = 2 sin θ / g
cos θ = 3 g / 4 (T / V) from (I)
cos θ = 3 g / 4 * 2 sin V / g = 6 / 4 sin θ
tan θ = 2/3
θ = 33.7 deg
As a check- let V = 100 m/s
Vx = 100 cos 33.7 = 83,2
Vy = 100 sin 33,7 = 55.5
T = 2 * 55.5 / 9.8 = 11.3 sec
H = 1/2 * 9.8 * (11.3 / 2)^2 = 156
R = 83.2 * 11.3 = 932
R / H = 932 / 156 = 5.97 6 within rounding
Answer:
temperature is a measure of hot or cold or warm or foggy
Explanation:
No two electrons can have the same set of quantum numbers .
<h3>What is Wolfgang Pauli hypothesized an exclusion principle?</h3>
Pauli made a significant advance when he proposed the notion of adding a fourth quantum number to the three that were previously used to represent the quantum state of an electron. Physically speaking, the first three quantum numbers made sense since they had to do with how the electron moved about the nucleus.
The following rule was developed by Austrian physicist Wolfgang Pauli. The quantum numbers of any two electrons cannot be identical.
To put it another way, no two electrons can be in the same state. The Pauli exclusion principle is the name given to this proposition since it forbids electrons from being in the same state.
to learn more about exclusion principle go to - brainly.com/question/90573
#SPJ4