Answer:
![A(t)=50e^{-\frac{t}{70}}](https://tex.z-dn.net/?f=A%28t%29%3D50e%5E%7B-%5Cfrac%7Bt%7D%7B70%7D%7D)
Explanation:
The volume of fluid in the tank =350 liters
Initial Amount of Salt, A(0)=50 grams
<u>Amount of Salt in the Tank
</u>
![\dfrac{dA}{dt}=R_{in}-R_{out}](https://tex.z-dn.net/?f=%5Cdfrac%7BdA%7D%7Bdt%7D%3DR_%7Bin%7D-R_%7Bout%7D)
Pure water is then pumped into the tank at a rate of 5 L/min. Therefore:
=(concentration of salt in inflow)(input rate of brine)
![=(0\frac{g}{L})( 5\frac{L}{min})\\\\R_{in}=0\frac{g}{min}](https://tex.z-dn.net/?f=%3D%280%5Cfrac%7Bg%7D%7BL%7D%29%28%205%5Cfrac%7BL%7D%7Bmin%7D%29%5C%5C%5C%5CR_%7Bin%7D%3D0%5Cfrac%7Bg%7D%7Bmin%7D)
=(concentration of salt in outflow)(output rate of brine)
![=(\frac{A(t)}{350})( 5\frac{L}{min})\\R_{out}=\frac{A(t)}{70}](https://tex.z-dn.net/?f=%3D%28%5Cfrac%7BA%28t%29%7D%7B350%7D%29%28%205%5Cfrac%7BL%7D%7Bmin%7D%29%5C%5CR_%7Bout%7D%3D%5Cfrac%7BA%28t%29%7D%7B70%7D)
Therefore:
![\dfrac{dA}{dt}=0-\dfrac{A}{70}](https://tex.z-dn.net/?f=%5Cdfrac%7BdA%7D%7Bdt%7D%3D0-%5Cdfrac%7BA%7D%7B70%7D)
We then solve the resulting differential equation by separation of variables.
![\dfrac{dA}{dt}+\dfrac{A}{70}=0\\$The integrating factor: e^{\int \frac{1}{70}dt} =e^{\frac{t}{70}}\\$Multiplying by the integrating factor all through\\\dfrac{dA}{dt}e^{\frac{t}{70}}+\dfrac{A}{70}e^{\frac{t}{70}}=0\\(Ae^{\frac{t}{70}})'=0](https://tex.z-dn.net/?f=%5Cdfrac%7BdA%7D%7Bdt%7D%2B%5Cdfrac%7BA%7D%7B70%7D%3D0%5C%5C%24The%20integrating%20factor%3A%20e%5E%7B%5Cint%20%5Cfrac%7B1%7D%7B70%7Ddt%7D%20%3De%5E%7B%5Cfrac%7Bt%7D%7B70%7D%7D%5C%5C%24Multiplying%20by%20the%20integrating%20factor%20all%20through%5C%5C%5Cdfrac%7BdA%7D%7Bdt%7De%5E%7B%5Cfrac%7Bt%7D%7B70%7D%7D%2B%5Cdfrac%7BA%7D%7B70%7De%5E%7B%5Cfrac%7Bt%7D%7B70%7D%7D%3D0%5C%5C%28Ae%5E%7B%5Cfrac%7Bt%7D%7B70%7D%7D%29%27%3D0)
Taking the integral of both sides
![\int(Ae^{\frac{t}{70}})'=\int 0 dt\\Ae^{\frac{t}{70}}=C\\$Divide both sides by e^{\frac{t}{70}}\\A(t)=Ce^{-\frac{t}{70}}](https://tex.z-dn.net/?f=%5Cint%28Ae%5E%7B%5Cfrac%7Bt%7D%7B70%7D%7D%29%27%3D%5Cint%200%20dt%5C%5CAe%5E%7B%5Cfrac%7Bt%7D%7B70%7D%7D%3DC%5C%5C%24Divide%20both%20sides%20by%20e%5E%7B%5Cfrac%7Bt%7D%7B70%7D%7D%5C%5CA%28t%29%3DCe%5E%7B-%5Cfrac%7Bt%7D%7B70%7D%7D)
Recall that when t=0, A(0)=50 grams (our initial condition)
![A(t)=Ce^{-\frac{t}{70}}\\50=Ce^{-\frac{0}{70}}\\C=50](https://tex.z-dn.net/?f=A%28t%29%3DCe%5E%7B-%5Cfrac%7Bt%7D%7B70%7D%7D%5C%5C50%3DCe%5E%7B-%5Cfrac%7B0%7D%7B70%7D%7D%5C%5CC%3D50)
Therefore, the number of grams of salt in the tank at time t is:
![A(t)=50e^{-\frac{t}{70}}](https://tex.z-dn.net/?f=A%28t%29%3D50e%5E%7B-%5Cfrac%7Bt%7D%7B70%7D%7D)