1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Archy [21]
3 years ago
8

A tank contains 350 liters of fluid in which 50 grams of salt is dissolved. Pure water is then pumped into the tank at a rate of

5 L/min; the well-mixed solution is pumped out at the same rate. Let the A(t) be the number of grams of salt in the tank at time t. Find the number A(t).)
Engineering
1 answer:
Phantasy [73]3 years ago
8 0

Answer:

A(t)=50e^{-\frac{t}{70}}

Explanation:

The volume of fluid in the tank =350 liters

Initial Amount of Salt, A(0)=50 grams

<u>Amount of Salt in the Tank </u>

\dfrac{dA}{dt}=R_{in}-R_{out}

Pure water is then pumped into the tank at a rate of 5 L/min. Therefore:

R_{in}=(concentration of salt in inflow)(input rate of brine)

=(0\frac{g}{L})( 5\frac{L}{min})\\\\R_{in}=0\frac{g}{min}

R_{out}=(concentration of salt in outflow)(output rate of brine)

=(\frac{A(t)}{350})( 5\frac{L}{min})\\R_{out}=\frac{A(t)}{70}

Therefore:

\dfrac{dA}{dt}=0-\dfrac{A}{70}

We then solve the resulting differential equation by separation of variables.

\dfrac{dA}{dt}+\dfrac{A}{70}=0\\$The integrating factor: e^{\int \frac{1}{70}dt} =e^{\frac{t}{70}}\\$Multiplying by the integrating factor all through\\\dfrac{dA}{dt}e^{\frac{t}{70}}+\dfrac{A}{70}e^{\frac{t}{70}}=0\\(Ae^{\frac{t}{70}})'=0

Taking the integral of both sides

\int(Ae^{\frac{t}{70}})'=\int 0 dt\\Ae^{\frac{t}{70}}=C\\$Divide both sides by e^{\frac{t}{70}}\\A(t)=Ce^{-\frac{t}{70}}

Recall that when t=0, A(0)=50 grams (our initial condition)

A(t)=Ce^{-\frac{t}{70}}\\50=Ce^{-\frac{0}{70}}\\C=50

Therefore, the number of grams of salt in the tank at time t is:

A(t)=50e^{-\frac{t}{70}}

You might be interested in
Example – a 100 kW, 60 Hz, 1175 rpm motor is coupled to a flywheel through a gearbox • the kinetic energy of the revolving compo
rjkz [21]

Answer:

1200KJ

Explanation:

The heat dissipated in the rotor while coming down from its running speed to zero, is equal to three times its running kinetic energy.

P (rotor-loss) = 3 x K.E

P = 3 x 300 = 900 KJ

After coming to zero, the motor again goes back to running speed of 1175 rpm but in opposite direction. The KE in this case would be;

KE = 300 KJ

Since it is in opposite direction, it will also add up to rotor loss

P ( rotor loss ) = 900 + 300 = 1200 KJ

7 0
3 years ago
. In one stroke of a reciprocating compressor, helium is isothermally and reversibly compressed in a piston + cylinder from 298
andriy [413]

Answer:

5.7058kj/mole

Explanation:

Please see attachment for step by step guide

5 0
3 years ago
The period of an 800 hertz sine wave is
sukhopar [10]

Explanation:

White Board Activity: Practice: A sound has a frequency of 800 Hz. What is the period of the wave? The wave repeats 800 times in 1 second and the period of the function is 1/800 or 0.00125.

3 0
2 years ago
11–17 A long, thin-walled double-pipe heat exchanger with tube and shell diameters of 1.0 cm and 2.5 cm, respectively, is used t
lana [24]

Answer:

the overall heat transfer coefficient of this heat exchanger is 1855.8923 W/m²°C

Explanation:

Given:

d₁ = diameter of the tube = 1 cm = 0.01 m

d₂ = diameter of the shell = 2.5 cm = 0.025 m

Refrigerant-134a

20°C is the temperature of water

h₁ = convection heat transfer coefficient = 4100 W/m² K

Water flows at a rate of 0.3 kg/s

Question: Determine the overall heat transfer coefficient of this heat exchanger, Q = ?

First at all, you need to get the properties of water at 20°C in tables:

k = 0.598 W/m°C

v = 1.004x10⁻⁶m²/s

Pr = 7.01

ρ = 998 kg/m³

Now, you need to calculate the velocity of the water that flows through the shell:

v_{w} =\frac{m}{\rho \pi (\frac{d_{2}^{2}-d_{1}^{2}  }{4} )} =\frac{0.3}{998*\pi (\frac{0.025^{2}-0.01^{2}  }{4}) } =0.729m/s

It is necessary to get the Reynold's number:

Re=\frac{v_{w}(d_{2}-d_{1}) }{v} =\frac{0.729*(0.025-0.01)}{1.004x10^{-6} } =10891.4343

Like the Reynold's number is greater than 10000, the regime is turbulent. Now, the Nusselt's number:

Nu=0.023Re^{0.8} Pr^{0.4} =0.023*(10891.4343)^{0.8} *(7.01)^{0.4} =85.0517

The overall heat transfer coefficient:

Q=\frac{1}{\frac{1}{h_{1} }+\frac{1}{h_{2} }  }

Here

h_{2} =\frac{kNu}{d_{2}-d_{1}} =\frac{0.598*85.0517}{0.025-0.01} =3390.7278W/m^{2}C

Substituting values:

Q=\frac{1}{\frac{1}{4100}+\frac{1}{3390.7278}  } =1855.8923W/m^{2} C

5 0
3 years ago
Decide whether the function is an exponential growth or exponential decay function, and find the constant percentage rate of gro
sasho [114]

Answer:

Just answered this to confirm my profile.

Explanation:

I dont have a clue, this is just to confirm my profile.

8 0
3 years ago
Other questions:
  • Which option is a potential environmental risk of adopting a new technology?
    5·1 answer
  • James River Jewelry is a small jewelry shop. While James River Jewelry does sell typical jewelry purchased form jewelry vendors,
    15·1 answer
  • Water flows through a tee in a horizontal pipe system. The velocity in the stem of the tee is 15 f t/s, and the diameter is 12 i
    10·1 answer
  • A baseband signal with a bandwidth of 100 kHz and an amplitude range of±1 V is to be transmitted through a channel which is cons
    8·2 answers
  • This manometer is used to measure the difference in water level between the two tanks.
    10·1 answer
  • Cold water at 20 degrees C and 5000 kg/hr is to be heated by hot water supplied at 80 degrees C and 10,000 kg/hr. You select fro
    14·1 answer
  • Describe the relationship between atomic structure and Youngs' modulus?
    15·1 answer
  • A 5.74 kg rock is thrown upwards with a force of 317 N at a location where the local gravitational acceleration is 9.81 m/s^2. W
    10·1 answer
  • In the situation shown below, what would the Moon look like from Earth? Sun, Earth and Moon Four Moon Views A. View A B. View B
    8·1 answer
  • Periodic lubrication and oil changes according to manufacturer’s recommendations extend the life of your vehicle, and allow you
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!