By definition, power is the amount of energy consumed (or produced) in a second. (or more precisely, it is the rate of change in energy).
so anything which uses energy in a known time period can be labeled with a power rating.
an example for power could be a nuclear plant; traditional nuclear plants produce somewhat close to 1 giga watts (which means 1 giga joules in a second)
The answer is Marie Skłodowska Curie (AKA Marie Curie). She <span>lived her life awash in ionizing radiation. She would be carrying bottles of the radium and polonium in the pocket of her coat and put them in her desk drawer.
So even after a century, her papers are still radioactive. Since the</span><span> most general isotope of radium, which is radium-226, has a half life of 1,601 years.</span>
Answer:
(a). The reactive power is 799.99 KVAR.
(c). The reactive power of a capacitor to be connected across the load to raise the power factor to 0.95 is 790.05 KVAR.
Explanation:
Given that,
Power factor = 0.6
Power = 600 kVA
(a). We need to calculate the reactive power
Using formula of reactive power
...(I)
We need to calculate the 
Using formula of 

Put the value into the formula


Put the value of Φ in equation (I)


(b). We draw the power triangle
(c). We need to calculate the reactive power of a capacitor to be connected across the load to raise the power factor to 0.95
Using formula of reactive power


We need to calculate the difference between Q and Q'

Put the value into the formula


Hence, (a). The reactive power is 799.99 KVAR.
(c). The reactive power of a capacitor to be connected across the load to raise the power factor to 0.95 is 790.05 KVAR.
Answer: the earth
Explanation: ask your teacher
A sound wave leaves the loudspeaker. As it travels, it experiences a temporary increase in wavelength and then returns to its original wavelength. The sound wave traveled through a helium balloon (helium is less dense than air could explain this change in wavelength
The pattern of disruption brought on by energy moving away from the sound source is known as a sound wave. Longitudinal waves are what makeup sound. This indicates that the direction of energy wave propagation and particle vibrational propagation are parallel. The atoms oscillate when they are put into vibration.
A high-pressure and a low-pressure zone are created in the medium as a result of this constant back and forth action. Compressions and rarefactions, respectively, are terms used to describe these high- and low-pressure zones. The sound waves go from one medium to another as a result of these regions being transmitted to the surrounding media.
To learn more about sound waves please visit -
brainly.com/question/11797560
#SPJ1