We will assume helium to behave as an ideal gas and apply the ideal gas law:
PV = nRT
For pressure measured in atmospheres and volume measured in liters, the value of the molar gas constant is 0.082. Therefore:
T = PV / nR
T = (2.57 x 15.5) / (1.2 x 0.082)
T = 404.8 Kelvin
It is important because if the sample size is smaller, outliers could skew the data more than if it was large.
Answer:
4.6L
Explanation:
Use the equation (P1*V1)/(T1)=(P2*V2)/(T2)
P= pressure
V= volume
T= temperature in kelvins (remember K= C + 273)
Convert atm to mmHg or vise versa
1.5atm*(760mmhg/1atm)= 1140mmHg
(733mmHg * 5.36L)/(298K)=(1140mmHg * V)/(402K)
V= 4.6 or 4.65L (depending on sig figs)