Answer:
Explanation:
The deatailed diagram of VCRS is given below such
1-2=Isentropic compression in which temperature increases at constant entropy
2-3=Isobaric heat rejection i.e. heat rejected at constant pressure(condensation)
3-4=Irreversible expansion or throttling in which enthalpy remains constant
4-1=Isobaric heat addition(Evaporation)
Answer:
Force per unit plate area is 0.1344 
Solution:
As per the question:
The spacing between each wall and the plate, d = 10 mm = 0.01 m
Absolute viscosity of the liquid, 
Speed, v = 35 mm/s = 0.035 m/s
Now,
Suppose the drag force that exist between each wall and plate is F and F' respectively:
Net Drag Force = F' + F''

where
= shear stress
A = Cross - sectional Area
Therefore,
Net Drag Force, F = 

Also
F = 
where
= dynamic coefficient of viscosity
Pressure, P = 
Therefore,


Answer:
1) the final temperature is T2 = 876.76°C
2) the final volume is V2 = 24.14 cm³
Explanation:
We can model the gas behaviour as an ideal gas, then
P*V=n*R*T
since the gas is rapidly compressed and the thermal conductivity of a gas is low a we can assume that there is an insignificant heat transfer in that time, therefore for adiabatic conditions:
P*V^k = constant = C, k= adiabatic coefficient for air = 1.4
then the work will be
W = ∫ P dV = ∫ C*V^(-k) dV = C*[((V2^(-k+1)-V1^(-k+1)]/( -k +1) = (P2*V2 - P1*V1)/(1-k)= nR(T2-T1)/(1-k) = (P1*V1/T1)*(T2-T1)/(1-k)
W = (P1*V1/T1)*(T2-T1)/(1-k)
T2 = (1-k)W* T1/(P1*V1) +T1
replacing values (W=-450 J since it is the work done by the gas to the piston)
T2 = (1-1.4)*(-450J) *308K/(101325 Pa*650*10^-6 m³) + 308 K= 1149.76 K = 876.76°C
the final volume is
TV^(k-1)= constant
therefore
T2/T1= (V2/V1)^(1-k)
V2 = V1* (T2/T1)^(1/(1-k)) = 650 cm³ * (1149.76K/308K)^(1/(1-1.4)) = 24.14 cm³
Answer:
u could get hurt or it could not sence in but it easy to work with and u can just relax till u get were ur going.
Explanation: