Answer:
second-law efficiency = 62.42 %
Explanation:
given data
temperature T1 = 1200°C = 1473 K
temperature T2 = 20°C = 293 K
thermal efficiency η = 50 percent
solution
as we know that thermal efficiency of reversible heat engine between same temp reservoir
so here
efficiency ( reversible ) η1 = 1 -
............1
efficiency ( reversible ) η1 = 1 -
so efficiency ( reversible ) η1 = 0.801
so here second-law efficiency of this power plant is
second-law efficiency =
second-law efficiency =
second-law efficiency = 62.42 %
Answer:
Mechanical resonance frequency is the frequency of a system to react sharply when the frequency of oscillation is equal to its resonant frequency (natural frequency).
The physical dimension of the silicon is 10kg
Explanation:
Using the formular, Force, F = 1/2π√k/m
At resonance, spring constant, k = mw² ( where w = 2πf), when spring constant, k = centripetal force ( F = mw²r).
Hence, F = 1/2π√mw²/m = f ( f = frequency)
∴ f = F = mg, taking g = 9.8 m/s²
100 Hz = 9.8 m/s² X m
m = 100/9.8 = 10.2kg
Answer:
maneuverability
Explanation:
needless to say, I took the quiz
Carbonation is more of a healer to the engine