Answer:
Bar graph
Pie graph
Line Graph
Explanation:
mark as brainliest and drop some thanks!!!
Answer:
Approximately
(given that the magnitude of this charge is
.)
Explanation:
If a charge of magnitude
is placed in an electric field of magnitude
, the magnitude of the electrostatic force on that charge would be
.
The magnitude of this charge is
. Apply the unit conversion
:
.
An electric field of magnitude
would exert on this charge a force with a magnitude of:
.
Note that the electric charge in this question is negative. Hence, electrostatic force on this charge would be opposite in direction to the the electric field. Since the electric field points due south, the electrostatic force on this charge would point due north.
Answer:
Explanation:
D = 8.27 m ⇒ R = D / 2 = 8.27 m / 2 = 4.135 m
ω = 0.66 rev/sec = (0.66 rev/sec)*(2π rad/1 rev) = 4.1469 rad/s
We can apply the equation
Ff = W ⇒ μ*N = m*g <em>(I)</em>
then we have
N = Fc = m*ac = m*(ω²*R)
Returning to the equation <em>I</em>
<em />
μ*N = m*g ⇒ μ*m*ω²*R = m*g ⇒ μ = g / (ω²*R)
Finally
μ = (9.81 m/s²) / ((4.1469 rad/s)²*4.135 m) = 0.1379
-- Momentum is (mass) x (speed).
Object B has 1.5 times as much momentum as Object A has.
-- Kinetic energy is (1/2) x (mass) x (speed) .
Object B has 1.5 times as much kinetic energy as Object A has.
-- If they would both stop long enough to get on the scale,
Object B would weigh 1.5 times as much as Object A does.
Answer:
the yellow one
Explanation:
2 of the same elements resolute as the same element