1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mario62 [17]
3 years ago
6

A car is parked on a steep incline, making an angle of 37.0° below the horizontal and overlooking the ocean, when its brakes fai

l and it begins to roll. Starting from rest at t = 0, the car rolls down the incline with a constant acceleration of 4.05 m/s2, traveling 46.5 m to the edge of a vertical cliff. The cliff is 30.0 m above the ocean. (a) Find the speed of the car when it reaches the edge of the cliff. m/s (b) Find the time interval elapsed when it arrives there. s (c) Find the velocity of the car when it lands in the ocean. magnitude m/s direction ° below the horizontal (d) Find the total time interval the car is in motion. s (e) Find the position of the car when it lands in the ocean, relative to the base of the cliff. m

Physics
1 answer:
patriot [66]3 years ago
5 0

Answer:

a) The speed of the car when it reaches the edge of the cliff is 19.4 m/s

b) The time it takes the car to reach the edge is 4.79 s

c) The velocity of the car when it lands in the ocean is 31.0 m/s at 60.2º below the horizontal

d) The total time interval the car is in motion is 6.34 s

e) The car lands 24 m from the base of the cliff.

Explanation:

Please, see the figure for a description of the situation.

a) The equation for the position of an accelerated object moving in a straight line is as follows:

x =x0 + v0 * t + 1/2 a * t²

where:

x = position of the car at time t

x0 = initial position

v0 = initial velocity

t = time

a = acceleration

Since the car starts from rest and the origin of the reference system is located where the car starts moving, v0 and x0 = 0. Then, the position of the car will be:

x = 1/2 a * t²

With the data we have, we can calculate the time it takes the car to reach the edge and with that time we can calculate the velocity at that point.

46.5 m = 1/2 * 4.05 m/s² * t²

2* 46.5 m / 4.05 m/s² = t²

<u>t = 4.79 s </u>

The equation for velocity is as follows:

v = v0  + a* t

Where:

v = velocity

v0 =  initial velocity

a = acceleration

t = time

For the car, the velocity will be

v = a * t

at the edge, the velocity will be:

v = 4.05 m/s² * 4.79 s = <u>19.4 m/s</u>

b) The time interval was calculated above, using the equation of  the position:

x = 1/2 a * t²

46.5 m = 1/2 * 4.05 m/s² * t²

2* 46.5 m / 4.05 m/s² = t²

t = 4.79 s

c) When the car falls, the position and velocity of the car are given by the following vectors:

r = (x0 + v0x * t, y0 + v0y * t + 1/2 * g * t²)

v =(v0x, v0y + g * t)

Where:

r = position vector

x0 = initial horizontal position

v0x = initial horizontal velocity

t = time

y0 = initial vertical position

v0y = initial vertical velocity

g = acceleration due to gravity

v = velocity vector

First, let´s calculate the initial vertical and horizontal velocities (v0x and v0y). For this part of the problem let´s place the center of the reference system where the car starts falling.

Seeing the figure, notice that the vectors v0x and v0y form a right triangle with the vector v0. Then, using trigonometry, we can calculate the magnitude of each velocity:

cos -37.0º = v0x / v0

(the angle is negative because it was measured clockwise and is below the horizontal)

(Note that now v0 is the velocity the car has when it reaches the edge. it was calculated in a) and is 19,4 m/s)

v0x = v0 * cos -37.0 = 19.4 m/s * cos -37.0º = 15.5 m/s

sin 37.0º = v0y/v0

v0y = v0 * sin -37.0 = 19.4 m/s * sin -37.0 = - 11. 7 m/s

Now that we have v0y, we can calculate the time it takes the car to land in the ocean, using the y-component of the vector "r final" (see figure):

y = y0 + v0y * t + 1/2 * g * t²

Notice in the figure that the y-component of the vector "r final" is -30 m, then:

-30 m = y0 + v0y * t + 1/2 * g * t²

According to our reference system, y0 = 0:

-30 m = v0y * t + 1/2 g * t²

-30 m = -11.7 m/s * t - 1/2 * 9.8 m/s² * t²

0 = 30 m - 11.7 m/s * t - 4.9 m/s² * t²

Solving this quadratic equation:

<u>t = 1.55 s</u> ( the other value was discarded because it was negative).

Now that we have the time, we can calculate the value of the y-component of the velocity vector when the car lands:

vy = v0y + g * t

vy = - 11. 7 m/s - 9.8 m/s² * 1.55s = -26.9 m/s

The x-component of the velocity vector is constant, then, vx = v0x = 15.5 m/s (calculated above).

The velocity vector when the car lands is:

v = (15.5 m/s, -26.9 m/s)

We have to express it in magnitude and direction, so let´s find the magnitude:

|v| = \sqrt{(15.5 m/s)^{2} + (-26.9 m/s)^{2}} = 31.0m/s

To find the direction, let´s use trigonometry again:

sin α = vy / v

sin α = 26.9 m/s / 31.0 m/s

α = 60.2º

(notice that the angle is measured below the horizontal, then it has to be negative).

Then, the vector velocity expressed in terms of its magnitude and direction is:

vy = v * sin -60.2º

vx = v * cos -60.2º

v = (31.0 m/s cos -60.2º, 31.0 m/s sin -60.2º)

<u>The velocity is 31.0 m/s at 60.2º below the horizontal</u>

d) The total time the car is in motion is the sum of the falling and rolling time. This times where calculated above.

total time = falling time + rolling time

total time = 1,55 s + 4.79 s = <u>6.34 s</u>

e) Using the equation for the position vector, we have to find "r final 1" (see figure):

r = (x0 + v0x * t, y0 + v0y * t + 1/2 * g * t²)

Notice that the y-component is 0 ( figure)

we have already calculated the falling time and the v0x. The initial position x0 is 0. Then.

r final 1 = ( v0x * t, 0)

r final 1 = (15.5 m/s * 1.55 s, 0)

r final 1 = (24.0 m, 0)

<u>The car lands 24 m from the base of the cliff.</u>

PHEW!, it was a very complete problem :)

You might be interested in
Define wheel and axle in science terms
topjm [15]

Answer:

A simple machine consisting of an axle to which a wheel is fastened so that torque applied to the wheel winds a rope or chain onto the axle, yielding a mechanical advantage equal to the ratio of the diameter of the wheel to that of the axle.

5 0
3 years ago
To be considered a source of water pollution, the source must include a chemical
forsale [732]

To be considered a source of water pollution, the source must include a chemical is false.

<u>Explanation: </u>

The water pollution may be caused either by chemicals or waste materials that doesn’t contain chemicals such as domestic wastes, organic compounds, heavy metals etc. The life on Earth mostly relies on water and air, and if these two gets polluted; the results will be dangerous.

Around 70% of the planet is covered with water and the present state of its purity is a matter of a serious thought. Looking over various pollutants, only chemical wastes are not responsible to pollute the water.

Instead, there is range of elements from plastic scraps to chemical wastes that comes from either the non-point sources or the point sources. There are organic waste materials, heavy metals, volcanic eruptions, Tsunamis, earthquakes, etc. are also responsible to contaminate water and affect the amphibians as well as humans.

8 0
3 years ago
Read 2 more answers
Which of these describes a real image?
Margaret [11]
Image from a far away object formed by a concave mirror

I have no idea but this is my best guess as a sophomore in college
8 0
3 years ago
Write two characteristics of an educated society ​
almond37 [142]

Answer:

Different and better?

Explanation:

i dont think that helps lol

7 0
3 years ago
4)
Whitepunk [10]
A. 0 charge

15 . A
17. C
6 0
3 years ago
Other questions:
  • Choose the appropriate word choices below that correctly complete the blanks in the following three sentences: At the beginning,
    12·1 answer
  • Lori wants to send a box of oranges to a friend by mail. The box of oranges cannot exceed a mass of 10.222 Kg. If each orange ha
    14·1 answer
  • The following is current scientific evidence supporting the nebular theory on the formation of the solar system.
    5·2 answers
  • The radius of an atom is closest in size to a
    6·2 answers
  • A ray of yellow light ( f = 5.09 × 1014 hz) travels at a speed of 2.04 × 108 meters per second in
    8·1 answer
  • For a person with a Near Point (NP) = 45 cm, what would be his prescription's lens power = _____________ diopters. A) 0.947368 d
    10·1 answer
  • How many pounds must a sandbag weigh to test if a safety net can absorb the proper amount of force
    10·2 answers
  • What are used for manufacturing paper along with chemical
    12·1 answer
  • This player along with the point guard, are considered the leaders of the team.
    5·2 answers
  • What is accerlation due to gravity?? ​
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!