1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mario62 [17]
3 years ago
6

A car is parked on a steep incline, making an angle of 37.0° below the horizontal and overlooking the ocean, when its brakes fai

l and it begins to roll. Starting from rest at t = 0, the car rolls down the incline with a constant acceleration of 4.05 m/s2, traveling 46.5 m to the edge of a vertical cliff. The cliff is 30.0 m above the ocean. (a) Find the speed of the car when it reaches the edge of the cliff. m/s (b) Find the time interval elapsed when it arrives there. s (c) Find the velocity of the car when it lands in the ocean. magnitude m/s direction ° below the horizontal (d) Find the total time interval the car is in motion. s (e) Find the position of the car when it lands in the ocean, relative to the base of the cliff. m

Physics
1 answer:
patriot [66]3 years ago
5 0

Answer:

a) The speed of the car when it reaches the edge of the cliff is 19.4 m/s

b) The time it takes the car to reach the edge is 4.79 s

c) The velocity of the car when it lands in the ocean is 31.0 m/s at 60.2º below the horizontal

d) The total time interval the car is in motion is 6.34 s

e) The car lands 24 m from the base of the cliff.

Explanation:

Please, see the figure for a description of the situation.

a) The equation for the position of an accelerated object moving in a straight line is as follows:

x =x0 + v0 * t + 1/2 a * t²

where:

x = position of the car at time t

x0 = initial position

v0 = initial velocity

t = time

a = acceleration

Since the car starts from rest and the origin of the reference system is located where the car starts moving, v0 and x0 = 0. Then, the position of the car will be:

x = 1/2 a * t²

With the data we have, we can calculate the time it takes the car to reach the edge and with that time we can calculate the velocity at that point.

46.5 m = 1/2 * 4.05 m/s² * t²

2* 46.5 m / 4.05 m/s² = t²

<u>t = 4.79 s </u>

The equation for velocity is as follows:

v = v0  + a* t

Where:

v = velocity

v0 =  initial velocity

a = acceleration

t = time

For the car, the velocity will be

v = a * t

at the edge, the velocity will be:

v = 4.05 m/s² * 4.79 s = <u>19.4 m/s</u>

b) The time interval was calculated above, using the equation of  the position:

x = 1/2 a * t²

46.5 m = 1/2 * 4.05 m/s² * t²

2* 46.5 m / 4.05 m/s² = t²

t = 4.79 s

c) When the car falls, the position and velocity of the car are given by the following vectors:

r = (x0 + v0x * t, y0 + v0y * t + 1/2 * g * t²)

v =(v0x, v0y + g * t)

Where:

r = position vector

x0 = initial horizontal position

v0x = initial horizontal velocity

t = time

y0 = initial vertical position

v0y = initial vertical velocity

g = acceleration due to gravity

v = velocity vector

First, let´s calculate the initial vertical and horizontal velocities (v0x and v0y). For this part of the problem let´s place the center of the reference system where the car starts falling.

Seeing the figure, notice that the vectors v0x and v0y form a right triangle with the vector v0. Then, using trigonometry, we can calculate the magnitude of each velocity:

cos -37.0º = v0x / v0

(the angle is negative because it was measured clockwise and is below the horizontal)

(Note that now v0 is the velocity the car has when it reaches the edge. it was calculated in a) and is 19,4 m/s)

v0x = v0 * cos -37.0 = 19.4 m/s * cos -37.0º = 15.5 m/s

sin 37.0º = v0y/v0

v0y = v0 * sin -37.0 = 19.4 m/s * sin -37.0 = - 11. 7 m/s

Now that we have v0y, we can calculate the time it takes the car to land in the ocean, using the y-component of the vector "r final" (see figure):

y = y0 + v0y * t + 1/2 * g * t²

Notice in the figure that the y-component of the vector "r final" is -30 m, then:

-30 m = y0 + v0y * t + 1/2 * g * t²

According to our reference system, y0 = 0:

-30 m = v0y * t + 1/2 g * t²

-30 m = -11.7 m/s * t - 1/2 * 9.8 m/s² * t²

0 = 30 m - 11.7 m/s * t - 4.9 m/s² * t²

Solving this quadratic equation:

<u>t = 1.55 s</u> ( the other value was discarded because it was negative).

Now that we have the time, we can calculate the value of the y-component of the velocity vector when the car lands:

vy = v0y + g * t

vy = - 11. 7 m/s - 9.8 m/s² * 1.55s = -26.9 m/s

The x-component of the velocity vector is constant, then, vx = v0x = 15.5 m/s (calculated above).

The velocity vector when the car lands is:

v = (15.5 m/s, -26.9 m/s)

We have to express it in magnitude and direction, so let´s find the magnitude:

|v| = \sqrt{(15.5 m/s)^{2} + (-26.9 m/s)^{2}} = 31.0m/s

To find the direction, let´s use trigonometry again:

sin α = vy / v

sin α = 26.9 m/s / 31.0 m/s

α = 60.2º

(notice that the angle is measured below the horizontal, then it has to be negative).

Then, the vector velocity expressed in terms of its magnitude and direction is:

vy = v * sin -60.2º

vx = v * cos -60.2º

v = (31.0 m/s cos -60.2º, 31.0 m/s sin -60.2º)

<u>The velocity is 31.0 m/s at 60.2º below the horizontal</u>

d) The total time the car is in motion is the sum of the falling and rolling time. This times where calculated above.

total time = falling time + rolling time

total time = 1,55 s + 4.79 s = <u>6.34 s</u>

e) Using the equation for the position vector, we have to find "r final 1" (see figure):

r = (x0 + v0x * t, y0 + v0y * t + 1/2 * g * t²)

Notice that the y-component is 0 ( figure)

we have already calculated the falling time and the v0x. The initial position x0 is 0. Then.

r final 1 = ( v0x * t, 0)

r final 1 = (15.5 m/s * 1.55 s, 0)

r final 1 = (24.0 m, 0)

<u>The car lands 24 m from the base of the cliff.</u>

PHEW!, it was a very complete problem :)

You might be interested in
What factors affect potential energy
jok3333 [9.3K]
Mass ,gravity and height
6 0
2 years ago
Read 2 more answers
Therefore, they<br> experience a<br> and produce<br> surface tension.
ollegr [7]

Answer:

       

Explanation:

       

3 0
2 years ago
How much time will elapse between seeing and hearing an event?
julia-pushkina [17]

Depends on how far away the event is and what the temperature is as this affects the speed of sound.

For example, let's say you're 600 meters away and the temperature has no affect.

The speed of sound would be roughly 340 m/s so the time it would take to hear the sound would be 600/340 = 1.76 seconds

The speed of light (c) is 3.0 X 10^8 m/s so the time it would take to see the event would be 600/3 X 10^8 = 2 X 10^-7

Subtract: 1.76 - (2 X 10^-7) = approx. 1.76

3 0
3 years ago
What is something I could represent chloroplasts in a project
IgorC [24]
Nulceus - recipe book/instruction manual 
Mitochondria - Battery 
Endoplasmic reticulum - Printer or a pen? 
Golgi aparatus - an envelope 
Chloroplasts - green rechargable battery 
Cell membrane (elastic band (2 to represent the phospholipid bilayer) 
Ribosomes - I guess maybe an ink pot as its the material thats used to write 
Cell Wall - the paper bag 
lysosomes - washing up liquid (breaks down wate food on a dirty plate) 
vaculoes - bottle of water
3 0
3 years ago
Every object in the universe exerts a force on every other object. This force is called
MrMuchimi

Gravity is the correct answer.

6 0
3 years ago
Other questions:
  • The element in an incandescent lightbulb that releases light energy is
    5·1 answer
  • Ferromagnetic materials-
    12·1 answer
  • Substances can undergo physical changes or chemical changes. what is the difference between these two kinds of changes
    11·2 answers
  • You are performing an experiment in which you measure the difference in
    6·1 answer
  • Jared would describe a square as having four equal sides and four right angles. This is Jared’s __________ of a square. A. model
    9·1 answer
  • May someone please help me with this The ability to perceive accurately, appraise, and express emotion is called
    10·2 answers
  • A child on a 2.4 kg scooter at rest throws a 2.2 kg ball. The ball is given a speed of 3.1 m/s and the child and scooter move in
    9·1 answer
  • This is for science someone please help me ASAP I’ll give you brainlest
    7·1 answer
  • Would you expect the two species to compete for food on this island? Support your answer with an explanation.
    13·2 answers
  • Within a few sentences, explain the difference between meiosis and mitosis.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!