Answer:
The maximum wavelength is 492 nm.
Explanation:
Given that,
Angular separation 
Suppose a telescope with a small circular aperture of diameter 2.0 cm.
We need to calculate the maximum wavelength
Using formula of angular separation


Put the value into the formula

For small angle 



Hence, The maximum wavelength is 492 nm.
The dependent variable is: <em>"number of vocabulary words subjects can remember"</em>
<h3>
Which is the dependent variable?</h3>
In an experiment, we basically see how changing one variable affects another variable.
In this case, the experiment is:
<em>" if sleep affects the number of vocabulary words subjects can remember."</em>
Then the hours of sleep would be the independent variable (the one that the scientist can change) and the number of vocabulary words subjects can remember is the dependent variable (that depends on the independent variable).
So the correct answer is:
<em>"number of vocabulary words subjects can remember"</em>
If you want to learn more about variables:
brainly.com/question/15246027
#SPJ1
Answer:
179.47m/s
Explanation:
Using the law of conservation of momentum
m1u1 + m2u2 = (m1+m2)v
m1 and m2 are the masses
u1 and u2 are the initial velocities
v is the final velocity
Substitute
7750(179)+72(230) = (7750+72)v
1,387,250+16560 = 7822v
1,403,810 = 7822v
v = 1,403,810/7822
v= 179.47m/s
Hence the final velocity of the probe is 179.47m/s
Answer:
Explanation:subtract all of those by the all of the other numbers and that’s the answer i think that’s the way I learned it
Answer:
The magnitude of the electric field at a point equidistant from the lines is 
Explanation:
Given that,
Positive charge = 24.00 μC/m
Distance = 4.10 m
We need to calculate the angle
Using formula of angle



We need to calculate the magnitude of the electric field at a point equidistant from the lines
Using formula of electric field

Put the value into the formula



Hence, The magnitude of the electric field at a point equidistant from the lines is 