By Kirchoff's law in left side loop

similarly kirchoff's law in right side loop

also by junction law we know that

now by plug in all values we have




So by solving above equations we have



Answer:
A )
Explanation:
This change in frequency observation occur due to doppler effect
if the wave source moves,In the time between one wave peak being emitted and the next, the source will have moved so that the shells will no longer be concentric. The wavefronts will get closer together in front of the source as it travels and will be further apart behind it. (see the graph)
when the person standing still in front of the ambulance, he will observe a <em>higher frequency </em>than before as the source travels towards them.

The pitch we hear depends on the frequency of the sound wave.
A high frequency corresponds to a high pitch
as we hear a higher frequency , it makes the <em>pitch higher</em> too
Answer:
6.4 J
Explanation:
m = mass of the bullet = 10 g = 0.010 kg
v = initial velocity of bullet before collision = 1.8 km/s = 1800 m/s
v' = final velocity of the bullet after collision = 1 km/s = 1000 m/s
M = mass of the block = 5 kg
V = initial velocity of block before collision = 0 m/s
V' = final velocity of the block after collision = ?
Using conservation of momentum
mv + MV = mv' + MV'
(0.010) (1800) + (5) (0) = (0.010) (1000) + (5) V'
V' = 1.6 m/s
Kinetic energy of the block after the collision is given as
KE = (0.5) M V'²
KE = (0.5) (5) (1.6)²
KE = 6.4 J
The laws of conservation of energy and conservation of angular momentum ensure that any rotating, collapsing cloud will end up as a spinning disk is the reason.
<h3>What is an Orbit?</h3>
This is defined as a curved path in space which is characterized by an object going round and round a planet, moon, or star.
In this scenario, all the planets orbit the Sun in the same direction and in nearly the same plane to ensure any rotating, collapsing cloud will end up as a spinning disk.
Read more about Orbit here brainly.com/question/3668699
<h3>
Answer:</h3>
375 N
<h3>
Explanation:</h3>
Topic tested: Newton's Law of motion
The question is testing on the application of Newton's second Law of motion.
We are given;
- Mass of the football = 5 Kg
- Initial velocity of the football, Vf = 15 m/s
- Time taken to bring the ball to rest = 0.2 s
- Final velocity, Vo = 0 m/s ( since the ball went to rest)
We are required to determine the force exerted to bring it to rest.
- According to the Newton's second law of motion the resultant force and rate of change in momentum are directly proportion.

Thus;


Force = 375 N
Hence, the force exerted on the ball by the receiver was 375 N