Calculate the mass of the solute <span>in the solution :
Molar mass KCl = </span><span>74.55 g/mol
m = Molarity * molar mass * volume
m = 0.9 * 74.55 * 3.5
m = 234.8325 g
</span><span>To prepare 0.9 M KCl solution, weigh 234.8325 g of salt in an analytical balance, dissolve in a beaker, shortly after transfer with the help of a funnel of transfer to a volumetric flask of 100 cm</span>³<span> and complete with water up to the mark, then cover the balloon and finally shake the solution to mix
hope this helps!</span>
The two compounds shown indeed have tha same molecular formula, C5 H11 NO2. One of the molecules has a group NH2 and a group COOH, the other molecule has a NOO group, that makes that the two isomers have a completely different structure, with the atoms arranged in a completely different order. <span>This kind of isomers fits in the definition of structural isomers, so the answer is structural isomers.</span>
Answer is: the percent by mass of NaHCO₃ is 2,43%.
m(NaHCO₃) = 10 g.
V(H₂O) = 400 ml.
d(H₂O) = 1 g/ml.
m(H₂O) = V(H₂O) · d(H₂O).
m(H₂O) = 400 ml · 1 g/ml.
m(H₂O) = 400 g.
m(solution) = m(H₂O) + m(NaHCO₃).
m(solution) = 400 g + 10 g.
m(solution) = 410 g.
ω(NaHCO₃) = 10 g ÷ 410 g · 100%.
ω(NaHCO₃) = 2,43 %
1 carot = 0.2 grams
1.5 carot = 0.3 grams.
1 mol of Carbon = 12 grams
x mol = 0.3 grams
0.3 * 1 = 12 x
x = 0.3/12
x = 0.025 mol
1 mol of Carbon is 6.02 * 10^23 atoms
0.025 mol of carbon is x
1/0.025 = 6.02*10^23 * /x
x = 0.025 * 6.02 * 10^23
x = 1.5 * 10^22 atoms of carbon.
The balanced equation would be
3H2 + N2 ———> 2NH3