The kinetic-molecular theory explains the properties of the gases in terms of energy, size and motion of their particles.
The assumptions that the kinetic-moletuclar theory makes about the characteristics of gas particles are:
1. Gases are constituted by a large amount of particles (atoms or molecules) symilar to solid spherical sphers, in constant and random motion.
2. Gas particles move in straight line until collide with another particle or the walls of the vessel.
3. Gas particles are so small compared to the distances that separate them, that the volume of the gas is considered empty space: the volume of the particles is neglected.
4. Beside the already mentioned collisions with the walls of the vessels or between the particles, there is no interaction (attractive or repulsive forces) acting on the gas particles.
5. The collisions between gas particles or with the walls of the vessel are elastic: there is not loss of energy.
6. The average kinetic energy of the particles in a gas depends only on the absolute temperature of the gas: at a given temperatue every gas have the same average kinetic energy.
That collection of assumptions are used to explain such things as: the relation of pressure withthe number of particles, the relation of pressure and temperature, the relation of pressure and volume, the relation of volume and temperature, Avogadro's hypothesis (relation of volume and number of particles), Dalton's Law of partial pressures, and both effusion and difusion.
Answer:Independent, dependent, and controlled variables.
Explanation:
If we compare a cell with an egg there is a major difference between the outer membrane
in case of cell they are bounded by semi permeable membrane
The semi permeable membrane is a selectively permeable membrane which allows the movement of only solvent molecule and not solute molecules through it.
So water can move into or out of the cell through cell membrane by a special physical process known as osmosis.
the water will move from a low concentration gradient to high concentration gradient.
Answer:
trans-1,3-pentadiene is more stable than 1,4-pentadiene due to presence of a conjugated double bond.
Explanation:
Here, 
H(hydrogenated pdt.) is same for both 1,4-pentadiene and 1,3-pentadiene as they both produce pentane after hydrogenation
H(diene) depends on stability of diene.
More stable a diene, lesser will be it's H(diene) value (more neagtive).
trans-1,3-pentadiene is more stable than 1,4-pentadiene due to presence of a conjugated double bond.
Hence,
is higher (less negative) for trans-1,3-pentadiene
Answer:
3Ba(OH)2 + 2H3PO4 —> Ba3(PO4)2 + 6H2O
Explanation:
Ba(OH)2 + H3PO4 —> Ba3(PO4)2 + H2O
There are 3 atoms of Ba on the right side and 1atom on the left side. It can be balance by putting 3 in front of Ba(OH)2 as shown below:
3Ba(OH)2 + H3PO4 —> Ba3(PO4)2 + H2O
There are 2 atoms of P on the right side and 1atom on the left. It can be balance by putting 2 in front of H3PO4 as shown below:
3Ba(OH)2 + 2H3PO4 —> Ba3(PO4)2 + H2O
Now, there are a total of 12 atoms of H on the left side and 2 atoms on the right side. It can be balance by putting 6 in front of H2O as shown below:
3Ba(OH)2 + 2H3PO4 —> Ba3(PO4)2 + 6H2O
Now the equation is balanced as the numbers of the atoms of the different elements present on both sides are equal