1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
FrozenT [24]
3 years ago
7

Triangle has an area of 54cm2 and a height of 9m. How long is the base?

Mathematics
1 answer:
Mkey [24]3 years ago
4 0
Area = 54cm²

Height = 9m...

I want to believe you made a mistake in writing the unit for the height... Probably 9cm..

Comment if otherwise...

Area = 1/2 × base × height

54cm² = 1/2 × base × 9

Base = (54 × 2)/9

Base = 6×2

Base = 12cm....

Hope this helped...
You might be interested in
111=14g What the answer
fredd [130]

Answer:

g =  \frac{111}{14}

Step-by-step explanation:

111 = 14g

14g = 111

g =  \frac{111}{14}

<h2>Insta: 25k_kem</h2>
6 0
2 years ago
Read 2 more answers
A light bulb is designed by revolving the graph of:
nadya68 [22]

Answer:

\displaystyle 0.251327 \ in. \ of \ glass

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Terms/Coefficients
  • Expand by FOIL (First Outside Inside Last)
  • Factoring

<u>Calculus</u>

Differentiation

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Integration

  • Integration Property: \displaystyle \int\limits^a_b {cf(x)} \, dx = c \int\limits^a_b {f(x)} \, dx
  • Fundamental Theorem of Calculus: \displaystyle \int\limits^a_b {f(x)} \, dx = F(b) - F(a)
  • Area between Two Curves
  • Volumes of Revolution
  • Arc Length Formula: \displaystyle AL = \int\limits^a_b {\sqrt{1+ [f'(x)]^2}} \, dx
  • Surface Area Formula: \displaystyle SA = 2\pi \int\limits^a_b {f(x) \sqrt{1+ [f'(x)]^2}} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle y = \frac{1}{3}x^{\frac{1}{2}} - x^{\frac{3}{2}}\\Interval: [0, \frac{1}{3}]

<u>Step 2: Differentiate</u>

  1. Basic Power Rule:                    \displaystyle y' = \frac{1}{2} \cdot \frac{1}{3}x^{\frac{1}{2} - 1} - \frac{3}{2} \cdot x^{\frac{3}{2} - 1}
  2. [Derivative] Simplify:                \displaystyle y' = \frac{1}{6}x^{\frac{-1}{2}} - \frac{3}{2}x^{\frac{1}{2}}
  3. [Derivative] Simplify:                \displaystyle y' = \frac{1}{6\sqrt{x}} - \frac{3\sqrt{x}}{2}}

<u>Step 3: Integrate Pt. 1</u>

  1. Substitute [Surface Area]:                                                                             \displaystyle SA = 2\pi \int\limits^{\frac{1}{3}}_0 {(\frac{1}{3}x^{\frac{1}{2}} - x^{\frac{3}{2}}) \sqrt{1+ [\frac{1}{6\sqrt{x}} - \frac{3\sqrt{x}}{2}}]^2}} \, dx
  2. [Integral - √Radical] Expand/Add:                                                               \displaystyle SA = 2\pi \int\limits^{\frac{1}{3}}_0 {(\frac{1}{3}x^{\frac{1}{2}} - x^{\frac{3}{2}}) \sqrt{\frac{81x^2+18x+1}{36x}} \, dx
  3. [Integral - √Radical] Factor:                                                                         \displaystyle SA = 2\pi \int\limits^{\frac{1}{3}}_0 {(\frac{1}{3}x^{\frac{1}{2}} - x^{\frac{3}{2}}) \sqrt{\frac{(9x + 1)^2}{36x}} \, dx
  4. [Integral - Simplify]:                                                                                       \displaystyle SA = 2\pi \int\limits^{\frac{1}{3}}_0 {-\frac{|9x + 1|(3x - 1)}{18}} \, dx
  5. [Integral] Integration Property:                                                                     \displaystyle SA = \frac{- \pi}{9} \int\limits^{\frac{1}{3}}_0 {|9x + 1|(3x - 1)} \, dx

<u>Step 4: Integrate Pt. 2</u>

  1. [Integral] Define:                                                                                             \displaystyle \int {|9x + 1|(3x - 1)} \, dx
  2. [Integral] Assumption of Positive/Correction Factors:                                 \displaystyle \frac{9x + 1}{|9x + 1|} \int {(9x + 1)(3x - 1)} \, dx
  3. [Integral] Expand - FOIL:                                                                                 \displaystyle \frac{9x + 1}{|9x + 1|} \int {27x^2 - 6x - 1} \, dx
  4. [Integral] Integrate - Basic Power Rule:                                                         \displaystyle \frac{9x + 1}{|9x + 1|} (9x^3 - 3x^2 - x)
  5. [Expression] Multiply:                                                                                      \displaystyle \frac{(9x + 1)(9x^3 - 3x^2 - x)}{|9x + 1|}

<u>Step 5: Integrate Pt. 3</u>

  1. [Integral] Substitute/Integral - FTC:                                                              \displaystyle SA = \frac{- \pi}{9} (\frac{(9x + 1)(9x^3 - 3x^2 - x)}{|9x + 1|})|\limits_{0}^{\frac{1}{3}}
  2. [Integrate] Evaluate FTC:                                                                                \displaystyle SA = \frac{- \pi}{9} (\frac{-1}{3})
  3. [Expression] Multiply:                                                                                     \displaystyle SA = \frac{\pi}{27} \ ft^2

<em>It is in ft² because it is given that our axis are in ft.</em>

<u>Step 6: Find Amount of Glass</u>

<em>Convert ft² to in² and multiply by 0.015 in (given) to find amount of glass.</em>

  1. Convert ft² to in²:                    \displaystyle \frac{\pi}{27} \ ft^2 \ \div 144 \ in^2/ft^2 = \frac{16 \pi}{3} \ in^2
  2. Multiply:                                   \displaystyle \frac{16 \pi}{3} \ in^2 \cdot 0.015 \ in = 0.251327 \ in. \ of \ glass

And we have our final answer! Hope this helped on your Calc BC journey!

5 0
2 years ago
Need help with this one
Vedmedyk [2.9K]
The answer is 20% since the percentages cancels each other out.
8 0
3 years ago
Judy pays $29 for 8 gallons of gas and 2 bottles of water. Carmen pays $45 for 12 gallons of gas and 4 bottles of water. How muc
Dmitry [639]
G=gas
w=bottle of water

8g + 2w = 29
12g + 4w = 45
I'm going to use elimination to cancel out the variable w by multiplying the first equation by -2.

-16g - 4w = -58
12g + 4w = 45
-4g = -13
/-4 /-4
g = 3.25

Now plug it into an equation, any equation.
8 (3.25) + 2w = 29
26 +2w=29
w=1.5
Now to check, plug it into both equations if you want.

12 (3.25) + 4 (1.5)=45
39 + 6=45

One bottle of water is $1.50, while one gallon of gas is $3.25.
5 0
3 years ago
Trying to figure this out
prisoha [69]
I hope this helps you

6 0
3 years ago
Other questions:
  • If you have 15 blocks and divide the blocks equally among 5 friends how many blocks does each friend receive
    8·1 answer
  • Solve the inequality. Then graph the solution set.<br> 7(x + 1) &lt; 5x + 6
    11·1 answer
  • How would I set up an equation for this problem?
    11·1 answer
  • there are 6 people in the ballot for regional judges. voters can vote for any 4. voters can choose to vote for 0,1,2,3,or 4 judg
    9·2 answers
  • Write 1,386 as the product of it prim fa
    6·1 answer
  • The future value of Elijah's certificate of deposit (CD), for the first five years, is represented by the sequence below. The ap
    13·2 answers
  • Jan drank half a gallon of milk. She drank 1/5 of that. How much of the gallon did Jan drink?
    5·1 answer
  • Please help me!! I don’t get it.
    15·2 answers
  • What is the range of -5,1,4,6,9,0,-7,-1
    14·2 answers
  • Find a parametrization of the line through the points A(-3,6) and B(2,9).
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!