Answer:
Empirical formula of C₈H₈ = CH
Explanation:
Data Given:
Molecular Formula = C₈H₈
Empirical Formula = ?
Solution
Empirical Formula:
Empirical formula is the simplest ration of atoms in the molecule but not all numbers of atoms in a compound.
So,
tha ration of the molecular formula should be divided by whole number to get the simplest ratio of molecule
C₈H₈ Consist of Carbon (C), and Hydrogen (H)
Now
Look at the ratio of these two atoms in the compound
C : H
8 : 8
Divide the ratio by two to get simplest ratio
C : H
8/8 : 8/8
1 : 1
So for the empirical formula is the simplest ratio of carbon to hydrogen 1 : 1
So the empirical formula will be
Empirical formula of C₈H₈ = CH
Answer:
2
Explanation:
1. The dew is formed when the water vapor at the atmosphere contacts the leaves, which are at a low temperature, so, the vapor temperature decreases, and the liquid is formed. So, it's a gas to liquid change.
2. Ice cubes are at the solid-state, thus this transformation is solid to a liquid change.
3. The cold juice is at a low temperature, so when the water vapor of the air contacts with the glass, its temperature decreases, and its change to a liquid phase. So, it's a gas to liquid change.
4. The evaporated water from the Earth's surface goes to the atmosphere, and, at high altitudes, the temperature is low, so the water vapor condenses and the drops get closer together forming the clouds. So, it's a gas to a liquid change.
This problem is providing us with the molality of a solution of calcium iodide as 0.01 m. So the most likely van't Hoff factor is required and theoretically found to be 3 due to the following:
<h3>Van't Hoff factor:</h3>
In chemistry, the correct characterization of solutions also imply the identification of the ions it will release in aqueous solution. For that reason, the van't Hoff factor gives us an idea of this number, according to the formula the solute has got.
In such a way, for calcium iodide, we write its ionization equation as shown below:

Assuming it is able to ionize due to the low molality, because if it was higher, then it won't ionize. Hence, since we have three moles of ion products, one Ca²⁺ and two I⁻, we can conclude the van't Hoff factor would be 3, although calculations may lead to a different, yet close result.
Learn more about the van't Hoff factor: brainly.com/question/23764376
Oxygen can combine with a metal to produce a compound