= 454.55 g/cm3
I'm not too sure since the graduated cylinder was missing and I really don't know how to do it then. But give this a shot. Are you sure it wasn't a graduated cylinder, because I have no idea what that means
Answer:
the mark of the broken end is 2.6 cm so, we use the scale from the next full mark i.e. 3cm
Explanation:
<em>we </em><em>now </em><em>measure</em><em> </em><em>the </em><em>length</em><em> </em><em>of </em><em>the </em><em>pencil</em><em> </em><em>by </em><em>keeping </em><em>the </em><em>3</em><em> </em><em>c</em><em>m</em><em> </em><em>mark </em><em>of </em><em>the </em><em>scale</em><em> </em><em>at </em><em>it's</em><em> </em><em>left </em><em>end.</em>
<em>The </em><em>3</em><em> </em><em>cm </em><em>value </em><em>is </em><em>then </em><em>subtracted</em><em> </em><em>from </em><em>the </em><em>scale</em><em> </em><em>reading</em><em> </em><em>at </em><em>the </em><em>right</em><em> </em><em>side </em><em>end </em><em>of </em><em>the </em><em>pencil</em><em> </em><em>to </em><em>obtain </em><em>the </em><em>correct</em><em> </em><em>length</em><em> </em><em>of </em><em>the </em><em>pencil.</em><em> </em><em>✏️</em>
<em>(</em><em>i </em><em>i </em><em>)</em><em> </em>place the scale in the contact with object along it's length
(2) Your eyes must be exactly in front of the point where the measurements to be taken.
Hope_it_helps_mga_ka_joiners_mwehehe
when the ball hits the floor and bounces back the momentum of the ball changes.
the rate of change of momentum is the force exerted by the floor on it.
the equation for the force exerted is
f = rate of change of momentum

v is the final velocity which is - 3.85 m/s
u is initial velocity - 4.23 m/s
m = 0.622 kg
time is the impact time of the ball in contact with the floor - 0.0266 s
substituting the values

since the ball is going down, we take that as negative and ball going upwards as positive.
f = 189 N
the force exerted from the floor is 189 N
The sound wave would behave differently in a swimming pool than in his bedroom because sound waves travel faster in more dense mediums; such as water. The wave will travel faster in water, and slower in air.