Rearrange the equation F = ma to solve for acceleration<span>. You can change this formula around to solve for </span>acceleration<span> by dividing both sides by the mass, so: a = F/m. To find the </span>acceleration<span>, simply divide the force by the mass of the </span>object <span>being accelerated.
Hope i helped :)</span>
It could be radiation because radiation means <span>the emission of energy as electromagnetic wave, but potential fits it best</span>
Gravitational force is determined by mass
Answer: Option B
<u>Explanation:</u>
According to Universal law of gravity, the gravitational force is directly proportional to the product of the masses of the objects and inversely proportional to the square of the distance between the objects.

Where,
G – gravitational constant = 
= masses of two objects
r – distance between the objects
So, as per this law, the gravitational force is found by mass.
From the average speed you can fix an equation:
Average speed = distance / time
You know the average speed = 65.1 kg / h, then
65.1 = distance / total time,
where total time is the time traveling plus 22.0 minutes
Call t the time treavelling and pass 22 minutes to hours:
65.1 = distance / [t + 22/60] ==> distance = [t + 22/60]*65.1
From the constant speed, you can fix a second equation
Constant speed = distance / time traveling
94.5 = distance / t ==> distance = 94.5 * t
The distance is the same in both equations, then you have:
[t +22/60] * 65.1 = 94.5 t
Now you can solve for t.
65.1t + 22*65.1/60 = 94.5t
94.5t - 65.1t = 22*65.1/60
29.4t = 23.87
t = 23.87 / 29.4
t = 0.812 hours
distance = 94.5 km/h * 0.812 h = 76.7 km
Answers: 1) 0.81 hours, 2) 76.7 km
The correct answer should be C