The selection of r objects out of n is done in
![C(n, r)= \frac{n!}{r!(n-r)!}](https://tex.z-dn.net/?f=C%28n%2C%20r%29%3D%20%5Cfrac%7Bn%21%7D%7Br%21%28n-r%29%21%7D%20)
many ways.
The total number of selections 10 that we can make from 6+7=13 students is
![C(13,10)= \frac{13!}{3!(10)!}= \frac{13*12*11*10!}{3*2*1*10!}= \frac{13*12*11}{3*2}= 286](https://tex.z-dn.net/?f=C%2813%2C10%29%3D%20%5Cfrac%7B13%21%7D%7B3%21%2810%29%21%7D%3D%20%5Cfrac%7B13%2A12%2A11%2A10%21%7D%7B3%2A2%2A1%2A10%21%7D%3D%20%5Cfrac%7B13%2A12%2A11%7D%7B3%2A2%7D%3D%20%20286%20)
thus, the sample space of the experiment is 286
A.
<span>"The probability that a randomly chosen team includes all 6 girls in the class."
total number of group of 10 which include all girls is C(7, 4), because the girls are fixed, and the remaining 4 is to be completed from the 7 boys, which can be done in C(7, 4) many ways.
</span>
![C(7, 4)= \frac{7!}{4!3!}= \frac{7*6*5*4!}{4!*3*2*1}= \frac{7*6*5}{3*2}=35](https://tex.z-dn.net/?f=C%287%2C%204%29%3D%20%5Cfrac%7B7%21%7D%7B4%213%21%7D%3D%20%5Cfrac%7B7%2A6%2A5%2A4%21%7D%7B4%21%2A3%2A2%2A1%7D%3D%20%5Cfrac%7B7%2A6%2A5%7D%7B3%2A2%7D%3D35%20%20%20)
<span>
P(all 6 girls chosen)=35/286=0.12
B.
"</span>The probability that a randomly chosen team has 3 girls and 7 boys.<span>"
with the same logic as in A, the number of groups were all 7 boys are in, is
</span>
![C(6, 3)= \frac{6!}{3!3!}= \frac{6*5*4*3!}{3!3!}= \frac{6*5*4}{3*2*1}=20](https://tex.z-dn.net/?f=C%286%2C%203%29%3D%20%5Cfrac%7B6%21%7D%7B3%213%21%7D%3D%20%5Cfrac%7B6%2A5%2A4%2A3%21%7D%7B3%213%21%7D%3D%20%5Cfrac%7B6%2A5%2A4%7D%7B3%2A2%2A1%7D%3D20%20%20%20)
<span>
so the probability is 20/286=0.07
C.
"</span>The probability that a randomly chosen team has either 4 or 6 boys.<span>"
case 1: the team has 4 boys and 6 girls
this was already calculated in part A, it is </span>0.12.
<span>
case 2, the team has 6 boys and 4 girls.
there C(7, 6)*C(6, 4) ,many ways of doing this, because any selection of the boys which can be done in C(7, 6) ways, can be combined with any selection of the girls.
</span>
![C(7, 6)*C(6, 4)= \frac{7!}{6!1}* \frac{6!}{4!2!} =7*15= 105](https://tex.z-dn.net/?f=C%287%2C%206%29%2AC%286%2C%204%29%3D%20%5Cfrac%7B7%21%7D%7B6%211%7D%2A%20%5Cfrac%7B6%21%7D%7B4%212%21%7D%20%3D7%2A15%3D%20105)
<span>
the probability is 105/286=0.367
since case 1 and case 2 are disjoint, that is either one or the other happen, then we add the probabilities:
0.12+0.367=0.487 (approximately = 0.49)
D.
"</span><span>The probability that a randomly chosen team has 5 girls and 5 boys.</span><span>"
selecting 5 boys and 5 girls can be done in
</span>
![C(7, 5)*C(6,5)= \frac{7!}{5!2} * \frac{6!}{5!1}=21*6=126](https://tex.z-dn.net/?f=C%287%2C%205%29%2AC%286%2C5%29%3D%20%5Cfrac%7B7%21%7D%7B5%212%7D%20%2A%20%5Cfrac%7B6%21%7D%7B5%211%7D%3D21%2A6%3D126%20)
many ways,
so the probability is 126/286=0.44