1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
11Alexandr11 [23.1K]
2 years ago
11

Sodium sulfate is slowly added to a solution containing 0.0500 M Ca 2 + ( aq ) and 0.0390 M Ag + ( aq ) . What will be the conce

ntration of Ca 2 + ( aq ) when Ag 2 SO 4 ( s ) begins to precipitate?
Chemistry
1 answer:
levacccp [35]2 years ago
4 0

The given question is incomplete. The complete question is as follows.

Sodium sulfate is slowly added to a solution containing 0.0500 M Ca^{2+}(aq) and 0.0390 M Ag^{+}(aq). What will be the concentration of Ca^{2+}(aq) when Ag_{2}SO_{4}(s) begins to precipitate? What percentage of the Ca^{2+}(aq) can be separated from the Ag(aq) by selective precipitation?

Explanation:

The given reaction is as follows.

      Ag_{2}SO_{4} \rightleftharpoons 2Ag^{+} + SO^{2-}_{4}

[Ag^{+}] = 0.0390 M

When Ag_{2}SO_{4} precipitates then expression for K_{sp} will be as follows.

         K_{sp} = [Ag^{+}]^{2}[SO^{2-}_{4}]

        1.20 \times 10^{-5} = (0.0390)^{2} \times [SO^{2-}_{4}]

       [SO^{2-}_{4}] = 0.00788 M

Now, equation for dissociation of calcium sulfate is as follows.

         CaSO_{4} \rightleftharpoons Ca^{2+} + SO^{2-}_{4}

      K_{sp} = [Ca^{2+}][SO^{2-}_{4}]

     4.93 \times 10^{-5} = [Ca^{2+}] \times 0.00788

           [Ca^{2+}] = 0.00625 M

Now, we will calculate the percentage of Ca^{2+} remaining in the solution as follows.

               \frac{0.00625}{0.05} \times 100

                 = 12.5%

And, the percentage of Ca^{2+} that can be separated is as follows.

                     100 - 12.5

                     = 87.5%

Thus, we can conclude that 87.5% will be the concentration of Ca^{2+}(aq) when Ag_{2}SO_{4}(s) begins to precipitate.

You might be interested in
Which sub-layer thins out into space, where there is no air
KengaRu [80]
<span>The "exosphere" is the most distant and tenuous "layer" of our atmosphere.</span>
3 0
3 years ago
Read 2 more answers
The decomposition of nitrogen dioxide is described by the following chemical equation: Suppose a two-step mechanism is proposed
Mandarinka [93]

Answer:

<u>first step </u>

NO2(g)  ------------------------------------> NO(g) + O(g)

<u>second step</u>

NO2(g) + O(g) -----------------------------> NO(g) + O2(g)

Explanation:

<u>first step </u>

NO2(g)  ------------------------------------> NO(g) + O(g)

<u>second step</u>

NO2(g) + O(g) -----------------------------> NO(g) + O2(g)

8 0
3 years ago
A galvanic (voltaic) cell consists of an electrode composed of zinc in a 1.0 M zinc ion solution and another electrode composed
MariettaO [177]

Answer:

The E°cell for the galvanic cell is 1.56 V.

Explanation:

A galvanic cell is a device that uses redox reactions to convert chemical energy into electrical energy. The chemical reaction used is always spontaneous.

Oxide-reduction reactions, also called redox, involve the transfer or transfer of electrons between two or more chemical species. In these reactions two substances interact: the reducing agent and the oxidizing agent.

The gain of electrons is called reduction and the loss of electrons oxidation. That is to say, there is oxidation whenever an atom or group of atoms loses electrons (or increases its positive charges) and in the reduction an atom or group of atoms gains electrons, increasing its negative charges or decreasing the positive ones.

The species that supplies electrons is the reducing agent (that is, it is that species that oxidizes, yielding electrons and increasing its positive charge, or decreasing the negative one causing the reduction of the other species) and the one that gains them is the oxidizing agent ( that is, it is that species that is reduced, capturing electrons and increasing its negative charge, or decreasing its positive charge, causing oxidation of the other species).

The galvanic cell works as follows: In the anodic half-cell oxidations occur, while in the cathodic half-cell reductions occur. The anode electrode, conducts the electrons that are released in the oxidation reaction, to the metallic conductors. These electrical conductors conduct the electrons and carry them to the cathode electrode; the electrons thus enter the cathode half-cell and the reduction takes place in it.

To determine the oxidizing and reducing agent you must first know the reduction potentials. For this you consult the list of standard reduction potentials. In this list you can see that the semi-reactions that occur with their corresponding potentials are:

Ag⁺ + e⁻ ⇒ Ag E°= 0.80 V

Zn²⁺ + 2 e⁻ ⇒ Zn E° -0.76 V

The species that has the greatest potential for reduction will be the species that will be reduced, that is, it will be the oxidizing agent. In this case, it will be the experience corresponding to silver (Ag). Therefore, to obtain the redox reaction, the half-reaction corresponding to zinc (Zn) must be reversed to be an oxidation, keeping its E ° value constant. Then:

Reduction: Ag⁺ + e⁻ ⇒ Ag E°= 0.80 V

Oxidation: Zn ⇒ Zn²⁺ + 2 e⁻ E° -0.76 V

So: <em>E°cell=Ereduction - Eoxidation</em>

Or what is the same<em> E°cell=Ecathode - Eanode </em>because the reduction always occurs in the cathode and oxidation in the anode.

E°cell=0.80 V - (-0.76) V

<em>E°cell= 1.56 V</em>

Then <u><em>the E°cell for the galvanic cell is 1.56 V.</em></u>

6 0
3 years ago
What is true at stp? A)the temperature is 273.15 kelvin, B)one mole of gas occupies one liter of volume. C)pressure is at 101 vo
fgiga [73]
STP stands for standard temperature and pressure. Standard pressure is equivalent to 1 atm, and standard temperature is equivalent to 273.15 K. Therefore, your answer is A. the temperature is 273.15 kelvin.

Hope this helps!
3 0
3 years ago
A client has experienced excessive losses of bicarbonate and has subsequently developed an acid–base imbalance. How will this lo
IRISSAK [1]

The kidneys will excrete increased quantities of acid.

Explanation:

The kidneys will excrete excess H+ ions in the blood (remember H+ ions are responsible for acidity) until the acid-base balance is restored in the blood. Bicarbonates, on the other hand, will be aggressively  reabsorbed by the renal tubules as the excess H+ are being excreted.

The acid base balance is mainly determined by the quantities of H⁺ and HCO₃⁻ ions in teh blood. These ions come from the dissociation of carbonic acid formed when carbon dioxide from tissues is dissolved in blood plasma.

6 0
3 years ago
Other questions:
  • Why is the formula for sodium thiosulfate Na2S2O3, not Na2SO3?
    9·1 answer
  • The __is (are) an example of a transform boundary.
    10·1 answer
  • What human made mechanisms are responsible for increasing the rate of global warming??
    11·1 answer
  • Which diagram shows a pattern similar to the emission spectrum of hydrogen?
    9·1 answer
  • 4 outer planets in order
    12·2 answers
  • The reaction A → B + C is known to be zero order in A with a rate constant of 5.0 × 10–2 mol/L·s at 25°C. An experiment was run
    14·1 answer
  • In a solution the___is the liquid that the____is added to.
    6·1 answer
  • Question 15 (1 point)
    9·1 answer
  • Help! question in picture!
    6·2 answers
  • The reaction between NO2 and co to produce no and CO2 is thought to occur in two steps:
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!