Answer:
<h3>The answer is 320.75 mL</h3>
Explanation:
The volume of a substance when given the density and mass can be found by using the formula

From the question we have

We have the final answer as
<h3>320.75 mL</h3>
Hope this helps you
5.5 grams of reactants. According to the Law of Conservation of Mass, mass isn’t created or lost through any chemical changes, so the total mass should remain constant from the initial reactants to the final products.
The molar mass of aluminum sulftae is 342.14 g/mol.
Since the subscript shows that there are 3 sulfurs within the substance, the total mass of sulfur is 96.21g/mol
Now take the mass of the sulfur and divide it by the molar mass of aluminum sulfate, then multiply by 100:
(96.21/342.15)(100) = 28.1% mass composition of sulfate
0.24 moles of oxygen must be placed in a 3.00 L container to exert a pressure of 2.00 atm at 25.0°C.
The variables given are Pressure, volume and temperature.
Explanation:
Given:
P = 2 atm
V = 3 litres
T = 25 degrees or 298.15 K by using the formula 25 + 273.17 = K
R = 0.082057 L atm/ mole K
n (number of moles) = ?
The equation used is of Ideal Gas law:
PV = nRT
n = 
Putting the values given for oxygen gas in the Ideal gas equation, we get
n = 
= 0.24
Thus, from the calculation using Ideal Gas law it is found that 0.24 moles of oxygen must be placed in a container.
Ideal gas law equation is used as it tells the relation between temperature, pressure and volume of the gas.