To answer this item, we assume that oxygen behaves ideally such that it is able to fulfill the following equation,
PV = nRT
If we are to retain constant the variable n and V.
The percent yield can therefore be solved through the following calculation,
n = (10.5 L)/(22.4 L) x 100%
Simplifying,
n = 46.875%
Answer: 48.87%
<span> because gasoline changes volume as a function of temperature or because there are different grades of gasoline or because the values are given in different units of measure .</span>
Answer:

Explanation:
Hello there!
In this case, since the vaporization process is carried out in order to turn a liquid into a gas due to the addition of heat, we can use the following heat equation involving the heat of vaporization of water or any other substance:

Thus, since this heat of vaporization for water is 2259.36 J/g, we plug in this amount to obtain the total energy for this process.

Which is positive due to the necessity of heat.
Regards!
Answer:
The correct answer is : 'the concatenation of NO will increase'.
Explanation:
Any change in the equilibrium is studied on the basis of Le-Chatelier's principle.
This principle states that if there is any change in the variables of the reaction, the equilibrium will shift in the direction to minimize the effect.
If the temperature is increased, so according to the Le-Chatlier's principle , the equilibrium will shift in the direction where increase in temperature occurs.

As, this is an endothermic reaction, increasing temperature will add more heat to the system which move equilibrium in the forward reaction with decrease in temperature. Hence, the equilibrium will shift in the right direction.
So, the concatenation of NO will increase.