as a heterogeneous mixture
Explanation:
because I just know that it is
The balanced equation is 2
AlI
3
(
a
q
)
+
3
Cl
2
(
g
)
→
2
AlCl
3
(
a
q
)
+
3
I
2
(
g
)
.
<u>Explanation:</u>
- Aluminum has a typical oxidation condition of 3+ , and that of iodine is 1- .
Along these lines, three iodides can bond with one aluminum. You get AlI3. For comparable reasons, aluminum chloride is AlCl3.
- Chlorine and iodine both exist normally as diatomic components, so they are Cl2( g ) also, I2( g ), individually. In spite of the fact that I would anticipate that iodine should be a strong.
Balancing the equation, we get:
2AlI
3( aq ) + 3Cl2
( g ) → 2AlCl3
( aq )
+ 3
I
2 ( g )
-
Realizing that there were two chlorines on the left, I simply found the basic numerous of 2 and 3 to be 6, and multiplied the AlCl 3 on the right.
-
Normally, presently we have two Al on the right, so I multiplied the AlI 3 on the left. Hence, I have 6 I on the left, and I needed to significantly increase I 2 on the right.
-
We should note, however, that aluminum iodide is viciously receptive in water except if it's a hexahydrate. In this way, it's most likely the anhydrous adaptation broke down in water, and the measure of warmth created may clarify why iodine is a vaporous item, and not a strong.
It's most natural state has a charge of -2. So, a negative ion with two more electrons than is normal.
Answer:
1) volumetric
2) graduated
3) volumetric
Explanation:
A volumetric glassware is a glassware that is marked at a particular point. A typical example of a volumetric glassware is the volumetric flask. A volumetric glassware is capable of measuring only a specific volume of a liquid.
On the other hand, graduated glassware can measure a range of volumes of liquid. However, a volumetric glassware is still required where a high degree of accuracy is important.
Explanation:
most of the x-rays are absorbed in thermosphere of earth's atmosphere