Answer:
the boat would be deeped by 3200 m
Explanation:
Given that
The boat arrives back after 4 seconds
And, the speed of the sound in water is 1,600 m/s
We need to find out how much deep is the water
So,
As we know that
Distance = ( speed × time) ÷ 2
Here we divided by 2 because the boat arrives back
= (1600 × 4) ÷ 2
= 3200 m
Therefore the boat would be deeped by 3200 m
To answer these questions just use the equations for potential energy using the mass and heights described. the potential energy at the prescribed heights = the initial kinetic energy required to reach that height.
Make sure you calculate the force of gravity on the surface using the radius of the planet.
Answer:
Acceleration (a) = 40 m/s²
Explanation:
Given:
Initial velocity (u) = 6 m/s
Final velocity (v) = 4.4 m/s
Time taken (t) = 0.04sec
Find:
Acceleration (a) = ?
Computation:
We know that,
⇒ v = u + at
⇒ a = (v - u) / t
⇒ Acceleration (a) = (4.4 - 6) / 0.04
⇒ Acceleration (a) = (-1.6) / 0.04
Acceleration (a) = 40 m/s²
The force on the object has a constant strength, but its direction
keeps changing. The force is always directed from the object to
the center of the circle. It's called "centripetal force".
Since you are referring to the TI-203 and TI-205, you need to know the actual masses of these two isotopes. TI-203 has 202.9723 amu and TI-205 has 204.9744 amu. Since you are concluding that this Thallium have 29.5% (Ti-203) and 70.5% (Ti-205), you need to multiply the percentage to the actual masses of the isotopes. With that, you should be able to get 204.3833 amu