Answer:
the conversion factor is f= 6 mol of glucose/ mol of CO2
Explanation:
First we need to balance the equation:
C6H12O6(s) + O2(g) → CO2(g) + H2O(l) (unbalanced)
C6H12O6(s) + 6O2(g) → 6CO2(g) + 6H2O(l) (balanced)
the conversion factor that allows to calculate the number of moles of CO2 based on moles of glucose is:
f = stoichiometric coefficient of CO2 in balanced reaction / stoichiometric coefficient of glucose in balanced reaction
f = 6 moles of CO2 / 1 mol of glucose = 6 mol of glucose/ mol of CO2
f = 6 mol of CO2/ mol of glucose
for example, for 2 moles of glucose the number of moles of CO2 produced are
n CO2 = f * n gluc = 6 moles of CO2/mol of glucose * 2 moles of glucose= 12 moles of CO2
4P + 502 -> P4O10 this is the answer
Answer: 4m/s2 (B)
Explanation:
Force = mass × acceleration
Force given is 8N
Mass=2kg
Acceleration =?
Substitute into the formula
F=ma
8=2a
A=8/2
A=4m/s2
Acceleration used is 4m/s2 (B)
Answer:
e. adiabatic process
Explanation:
Adiabatic process -
In the thermodynamic system , an adiabatic process is the one which involves no transfer of mass or heat of the substance , is referred to adiabatic process.
In this process , the temperature need not be constant ,
But only the heat is transferred into or out of the system .
Hence, from the given information of the question,.
The correct option is e. adiabatic process .