The question is: WHAT DATA OF THE ELECTRONIC CONFIGURATION ALLOWS YOU TO LOCATE THE CHEMICAL ELEMENTS IN THE PERIODIC TABLE?
Explanation:
Elements which have same number of valence electrons tend to show similar chemical properties due to which they are placed in the same group.
Hence, electronic configuration of an element tells us the number of valence electrons present in an element. As a result, it becomes easy to locate the element in its respective group.
2200 mg of antibiotic
Explanation:
Given that 40 mg of antibiotic/kg of the bodyweight is given.
If patient is 55 kg then the dose of antibiotic will be
if 40/1000000 is done then we can get antibiotic in kg/kg of the weight
= 0.00004 kg of antibiotic per kg
0.00004*55 ( to know how much 55 kg person will require)
= 0.0022 kg
This 0.0022 value will be converted to mg
0.0022*10^6
= 2200 mg of antibiotic will be given to a 55kg patient.
Answer:
has boiling point of 238 K
Explanation:
Boiling point depends on different intermolecular force such as molecular wight, dipole-dipole attraction force, hydrogen bonding, ionic attraction force.
Homonuclear diatomic molecules are covalent non-polar molecules and thereby free from dipole-dipole attraction force, hydrogen bonding and ionic interaction forces.
Hence, boiling point of homonuclear diatomic molecules depends solely on molecular weight.
We know, higher the molecular weight of a molecule, higher will be its boiling point. This phenomenon can be realized in terms of increasing london dispersion force with increase in molecular weight.
Decreasing order of molecular weight of halogen molecules :
>
>
>
So, decresing order of boiling point of halogen molecules:
>
>
>
Hence
has boiling point of 238 K
I believe the correct answer is the first option. To increase the molar concentration of the product N2O4, you should increase the pressure of the system. You cannot determine the effect of changing the temperature since we cannot tell whether it is an endothermic or an exothermic reaction. Also, decreasing the number of NO2 would not increase the product rather it would shift the equilibrium to the left forming more reactants. The only parameter we can change would be the pressure. And, since NO2 takes up more space than the product increasing the pressure would allow the reactant to collide more forming the product.
<span>The average speed of the gas is related to the kinetic
energy of the gas. The kinetic energy of
the gas is also related to the temperature of the gas. If the average speed of
the gas is closer to zero, it means that it has very low motion or kinetic
energy. This can be inferred that the gas has a very low temperature. At absolute
zero, the motion of all the gas molecules stops. This means that the kinetic
energy of the gas is also zero. Zero kinetic energy means zero average speed.</span>
<span>So, the answer is cylinder B. The average speed of the gas
in cylinder B is closest to zero.</span>