Multiply the coefficient by the change in temperature:
1.1*10^-5 x (37-5.2) = 0.0003498
Multiply Young's modulus by the area by the above answer:
2*10^11 x 52 * 0.0003498 x (1/100)^2 = 3.63792 x 10^5 N
Answer:
Assembler
Explanation:
An assembler can be define as a computer utility program that read, interpret and convert software programs written in low level assembly language into an object file, machine language, code and instruction that can be understood and executed by a computer.
Answer:
Explanation:
We can solve Von Karman momentum integral equation as seen below using following in the attached file
Answer:
Option A
Explanation:
We know that ions are present in hydrogen-air flame and when the burning of an organic compound takes place in this flame more ions are produced in the flame.
Thus when we apply a voltage across this flame, the ion collector plate attracts the all the ions in the flame.
The presence of organic compounds increases the voltage across the hydrogen ion flame produced at the ion collector increases and as the voltage increases, the detection of the organic compound can be made in turn.
Thus flame ionization detector clearly responds to the variation in the collection of ions or electrons in a flame.
Answer:
See explanation
Explanation:
Given:
Initial pressure,
p
1
=
15
psia
Initial temperature,
T
1
=
80
∘
F
Final temperature,
T
2
=
200
∘
F
Find the gas constant and specific heat for carbon dioxide from the Properties Table of Ideal Gases.
R
=
0.04513
Btu/lbm.R
C
v
=
0.158
Btu/lbm.R
Find the work done during the isobaric process.
w
1
−
2
=
p
(
v
2
−
v
1
)
=
R
(
T
2
−
T
1
)
=
0.04513
(
200
−
80
)
w
1
−
2
=
5.4156
Btu/lbm
Find the change in internal energy during process.
Δ
u
1
−
2
=
C
v
(
T
2
−
T
1
)
=
0.158
(
200
−
80
)
=
18.96
Btu/lbm
Find the heat transfer during the process using the first law of thermodynamics.
q
1
−
2
=
w
1
−
2
+
Δ
u
1
−
2
=
5.4156
+
18.96
q
1
−
2
=
24.38
Btu/lbm