Answer:
The power developed in HP is 2702.7hp
Explanation:
Given details.
P1 = 150 lbf/in^2,
T1 = 1400°R
P2 = 14.8 lbf/in^2,
T2 = 700°R
Mass flow rate m1 = m2 = m = 11 lb/s Q = -65000 Btu/h
Using air table to obtain the values for h1 and h2 at T1 and T2
h1 at T1 = 1400°R = 342.9 Btu/h
h2 at T2 = 700°R = 167.6 Btu/h
Using;
Q - W + m(h1) - m(h2) = 0
W = Q - m (h2 -h1)
W = (-65000 Btu/h ) - 11 lb/s (167.6 - 342.9) Btu/h
W = (-65000 Btu/h ) - (-1928.3) Btu/s
W = (-65000 Btu/h ) * {1hr/(60*60)s} - (-1928.3) Btu/s
W = -18.06Btu/s + 1928.3 Btu/s
W = 1910.24Btu/s
Note; Btu/s = 1.4148532hp
W = 2702.7hp
Answer:
L = 475.718
T = 240.89 ft
M = 23.0195
LC = 472.728
R = 1225 ft
Explanation:
See the attached file for the calculation.
Answer:
hello some parts of your question is missing attached below is the missing part ( the required fig and table )
answer : The solar collector surface area = 7133 m^2
Explanation:
Given data :
Rate of energy input to the collectors from solar radiation = 0.3 kW/m^2
percentage of solar power absorbed by refrigerant = 60%
Determine the solar collector surface area
The solar collector surface area = 7133 m^2
attached below is a detailed solution of the problem
Answer:

Explanation:
Cold water in: 
Hot water in: 

Step 1: Determine the rate of heat transfer in the heat exchanger




Step 2: Determine outlet temperature of hot water



Step 3: Determine the Logarithmic Mean Temperature Difference (LMTD)










Step 4: Determine required surface area of heat exchanger



Step 5: Determine length of heat exchanger


