Answer:
w = 10.437 kips
deflection at 1/4 span 20.83\E ft
at mid span = 1.23\E ft
shear stress 7.3629 psi
Explanation:
area of cross section = 18*76
length of span = 32 ft
moment = 334 kips-ft
we know that
moment = load *eccentricity
334 = w * 32
w = 10.437 kips
deflection at 1/4 span
= 20.83\E ft
at mid span
shear stress
Answer: mets
Explanation: meets are good
Answer: This is done by heating a large volume of quartz sand to temperatures as high as 1800˚C. The result is pure, isolated silicon, which is allowed to cool and then ground into a fine powder. To make silicone, this fine silicon powder is combined with methyl chloride and heated once again.
Explanation:
Answer:
b). Occurs at the outer surface of the shaft
Explanation:
We know from shear stress and torque relationship, we know that
where, T = torque
J = polar moment of inertia of shaft
τ = torsional shear stress
r = raduis of the shaft
Therefore from the above relation we see that
Thus torsional shear stress, τ is directly proportional to the radius,r of the shaft.
When r= 0, then τ = 0
and when r = R , τ is maximum
Thus, torsional shear stress is maximum at the outer surface of the shaft.