Answer:
Mechanical Advantage Formula
The efficiency of a machine is equal to the ratio of its output to its input. It is also equal to the ratio of the actual and theoretical MAs. But, it does not mean that low-efficiency machines are of limited use. An automobile jack, for example, have to overcome a great deal of friction and therefore it has low efficiency. But still, it is extremely valuable because small effort can be applied to lift a great weight.
Also, in another way the mechanical advantage is the force generated by a machine to the force applied to it which is applied in assessing the performance of the machine.
The mechanical advantage formula is:
MA = FBFA
Explanation:
MAmechanical advantageFBthe force of the object
FAthe effort to overcome the force
Answer:
The youth hockey training facility
Explanation:
Answer:
E=52000Hp.h
E=38724920Wh
E=1.028x10^11 ftlb
Explanation:
To solve this problem you must multiply the engine power by the time factor expressed in h / year, to find this value you must perform the conventional unit conversion procedure.
Finally, when you have the result Hp h / year you convert it to Ftlb and Wh

E=52000Hp.h

E=38724920Wh

E=1.028x10^11 ftlb
Answer:
1. True
2. True
3. False
Explanation:
The office location is where the soil layer is not uniform. The thickness of the soil varies which could lead to doors being jammed. The engineer needs to estimate the differential in clay soil.
The inclined surface can hold less weight than a vertical surface. The capacity to hold the weight is due to the gravitational force which is exerted to the load.
Answer:
The surface area of the primary settling tank is 0.0095 m^2.
The effective theoretical detention time is 0.05 s.
Explanation:
The surface area of the tank is calculated by dividing the volumetric flow rate by the overflow rate.
Volumetric flow rate = 0.570 m^3/s
Overflow rate = 60 m/s
Surface area = 0.570 m^3/s ÷ 60 m/s = 0.0095 m^2
Detention time is calculated by dividing the volume of the tank by the its volumetric flow rate
Volume of the tank = surface area × depth = 0.0095 m^2 × 3 m = 0.0285 m^3
Detention time = 0.0285 m^3 ÷ 0.570 m^3/s = 0.05 s