Answer:
121.63 g/mol
Explanation:
Sr(OH) 2 = Strontium Hydroxide
Correct answer: "A. Energy from an outside source is continuously being added."
An endothermic reaction is a reaction that is characterised by the system absorbing energy from its surroundings. That energy is usually in heat form. For example, when mixing water<span> with potassium chloride, this reaction will absorb heat and the container will feel cold - endothermic reaction.</span>
Answer:
The heat at constant pressure is -3,275.7413 kJ
Explanation:
The combustion equation is 2C₆H₆ (l) + 15O₂ (g) → 12CO₂ (g) + 6H₂O (l)
= (12 - 15)/2 = -3/2
We have;

Where R and T are constant, and ΔU is given we can write the relationship as follows;

Where;
H = The heat at constant pressure
U = The heat at constant volume = -3,272 kJ
= The change in the number of gas molecules per mole
R = The universal gas constant = 8.314 J/(mol·K)
T = The temperature = 300 K
Therefore, we get;
H = -3,272 kJ + (-3/2) mol ×8.314 J/(mol·K) ×300 K) × 1 kJ/(1000 J) = -3,275.7413 kJ
The heat at constant pressure, H = -3,275.7413 kJ.
The balanced equation for the ionization of the weak base pyridine,C5H5N in water, H2O
C_5H_5N ( aq.) + H2O ( l) ---------> C5H5NH+ (aq.) + OH- (aq.)
<h3>What is the balanced equation for the ionization?</h3>
Generally, Pyridine is characterized by a ring structure, in this characteristic ring structure N is sp2 hybridized, hence creating a lone pair present on N so s - character is more, as well as lone pair, is present.
Therefore, Considering The following functions of the equation:weak base pyridine,C5H5N in water, H2O
We write the balanced equation for the ionization as
C_5H_5N ( aq.) + H2O ( l) ---------> C5H5NH+ (aq.) + OH- (aq.)
Read more about Chemical Reaction
brainly.com/question/11231920