The next step is -748 divide by -11 is 68 m (answer) the pic got cropped sorry
Complete question:
At a particular instant, an electron is located at point (P) in a region of space with a uniform magnetic field that is directed vertically and has a magnitude of 3.47 mT. The electron's velocity at that instant is purely horizontal with a magnitude of 2×10⁵ m/s then how long will it take for the particle to pass through point (P) again? Give your answer in nanoseconds.
[<em>Assume that this experiment takes place in deep space so that the effect of gravity is negligible.</em>]
Answer:
The time it will take the particle to pass through point (P) again is 1.639 ns.
Explanation:
F = qvB
Also;

solving this two equations together;

where;
m is the mass of electron = 9.11 x 10⁻³¹ kg
q is the charge of electron = 1.602 x 10⁻¹⁹ C
B is the strength of the magnetic field = 3.47 x 10⁻³ T
substitute these values and solve for t

Therefore, the time it will take the particle to pass through point (P) again is 1.639 ns.
The best conclusion that can be drawn is that D) A current does not flow in the wire
Highest to lowest number:
-less than 1 solar mass
-between 1 and 10 solar masses
-between 10 and 30 solar masses
-between 30 and 60 solar masses
<h3>What is Stellar masses ?</h3>
Stellar mass is a phrase that is used by astronomers to describe the mass of a star.
- It is usually enumerated in terms of the Sun's mass as a proportion of a solar mass ( M ☉). Hence, the bright star Sirius has around 2.02 M ☉.
- Stellar masses are not fixed, although they change for single stars only on long periods.
Learn more about Stellar masses here:
brainly.com/question/1128503
#SPJ4